Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii.

Joshua M Mitchell, Jozlyn R Clasman, Cynthia M June, Kip-Chumba J Kaitany, James R LaFleur, Magdalena A Taracila, Neil V Klinger, Robert A Bonomo, Troy Wymore, Agnieszka Szarecka, Rachel A Powers, David A Leonard
Author Information
  1. Magdalena A Taracila: ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.
  2. Robert A Bonomo: ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.
  3. Troy Wymore: ⊥UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Abstract

The carbapenem-hydrolyzing class D β-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for β-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the β5-β6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the β5-β6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D β-lactamases but may also provide a map for β-lactam improvement.

References

  1. J Antimicrob Chemother. 1999 Mar;43(3):339-44 [PMID: 10223588]
  2. Biochemistry. 1999 Aug 10;38(32):10256-61 [PMID: 10441119]
  3. Nat Struct Biol. 2000 Oct;7(10):918-25 [PMID: 11017203]
  4. Biochim Biophys Acta. 2001 Mar 9;1546(1):132-42 [PMID: 11257516]
  5. Biochim Biophys Acta. 2001 May 5;1547(1):37-50 [PMID: 11343789]
  6. Biochemistry. 2001 Aug 7;40(31):9207-14 [PMID: 11478888]
  7. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14280-5 [PMID: 11724923]
  8. J Mol Biol. 2002 Jun 28;320(1):85-95 [PMID: 12079336]
  9. J Biol Chem. 2002 Nov 29;277(48):46601-8 [PMID: 12221102]
  10. Protein Sci. 2003 Jan;12(1):82-91 [PMID: 12493831]
  11. J Mol Graph Model. 2004 May;22(5):377-95 [PMID: 15099834]
  12. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 [PMID: 15299374]
  13. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 [PMID: 15299926]
  14. J Am Chem Soc. 2004 Nov 3;126(43):13945-7 [PMID: 15506754]
  15. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  16. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5354-9 [PMID: 17374723]
  17. Biochem J. 2008 Mar 15;410(3):455-62 [PMID: 18031291]
  18. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  19. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  20. Chem Biol. 2009 May 29;16(5):540-7 [PMID: 19477418]
  21. Biochemistry. 2009 Jul 7;48(26):6136-45 [PMID: 19485421]
  22. Antimicrob Agents Chemother. 2010 Jan;54(1):24-38 [PMID: 19721065]
  23. Biochemistry. 2009 Dec 1;48(47):11252-63 [PMID: 19860471]
  24. J Antimicrob Chemother. 2010 Feb;65(2):364-5 [PMID: 20008045]
  25. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  26. Antimicrob Agents Chemother. 2010 Nov;54(11):4575-81 [PMID: 20713680]
  27. Antimicrob Agents Chemother. 2011 Jan;55(1):429-32 [PMID: 21041501]
  28. Biochem J. 2010 Dec 15;432(3):495-504 [PMID: 21108605]
  29. J Mol Biol. 2011 Mar 4;406(4):583-94 [PMID: 21215758]
  30. Antimicrob Agents Chemother. 2011 Jun;55(6):2546-51 [PMID: 21422200]
  31. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):293-302 [PMID: 21460447]
  32. J Antimicrob Chemother. 2011 Aug;66(8):1745-50 [PMID: 21665906]
  33. Protein Eng Des Sel. 2011 Oct;24(10):801-9 [PMID: 21859796]
  34. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18424-9 [PMID: 22042844]
  35. Curr Pharm Des. 2013;19(2):223-38 [PMID: 22894617]
  36. Nature. 1990 Jan 18;343(6255):284-8 [PMID: 2300174]
  37. Drugs. 2013 Feb;73(2):159-77 [PMID: 23371303]
  38. J Antimicrob Chemother. 2013 Jul;68(7):1601-8 [PMID: 23449829]
  39. Antimicrob Agents Chemother. 2013 Oct;57(10):4848-55 [PMID: 23877677]
  40. Acc Chem Res. 2013 Nov 19;46(11):2407-15 [PMID: 23902256]
  41. Chem Biol. 2013 Sep 19;20(9):1107-15 [PMID: 24012371]
  42. Antimicrob Agents Chemother. 2014;58(1):333-41 [PMID: 24165180]
  43. Antimicrob Agents Chemother. 2014;58(4):2135-43 [PMID: 24468777]
  44. Antimicrob Agents Chemother. 2014 Aug;58(8):4944-8 [PMID: 24890588]
  45. J Clin Microbiol. 2015 Feb;53(2):727-30 [PMID: 25428154]
  46. Anal Biochem. 1989 Nov 1;182(2):319-26 [PMID: 2610349]
  47. Antibiotics (Basel). 2014 May 09;3(2):193-215 [PMID: 27025744]
  48. Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 [PMID: 3045756]
  49. Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 [PMID: 4202581]
  50. Protein Sci. 1994 Dec;3(12):2207-16 [PMID: 7756980]
  51. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]

Grants

  1. R01 AI100560/NIAID NIH HHS
  2. R15AI094489/NIAID NIH HHS
  3. P41GM103712/NIGMS NIH HHS
  4. R15 AI094489/NIAID NIH HHS
  5. 1R15AI082416/NIAID NIH HHS
  6. R01 AI072219/NIAID NIH HHS
  7. R01 AI063517/NIAID NIH HHS
  8. P41 GM103712/NIGMS NIH HHS
  9. I01 BX001974/BLRD VA
  10. R15 AI082416/NIAID NIH HHS

MeSH Term

Acinetobacter baumannii
Aztreonam
Bacterial Proteins
Cephalosporins
Hydrolysis
Kinetics
Protein Structure, Secondary
beta-Lactamases

Chemicals

Bacterial Proteins
Cephalosporins
beta-Lactamases
Aztreonam

Word Cloud

Created with Highcharts 10.0.0OXA-160OXA-225OXA-23OXA-24/40aztreonamceftazidimeclassDβ-lactamasesenzymesPSsubstitutionloopcarbapenem-hydrolyzingβ-lactamAcinetobactervariantssubstrateenhancedactivitiesdrugsstructuresR1side-chainβ5-β6resultsspectrumemergedworldwidecausativeagentsantibioticresistancespeciesManyappearedclinicallyincludingcontainhomologouspositionsbackgroundsrespectivelypurifiedusedsteady-statekineticanalysiscompareprofilesparentalpossessgreatlyhydrolyticcefotaximeceftriaxonecomparedresultmuchlowerKmvaluessuggestingenhancesbindingaffinitydeterminedacylatedformsshowoxyiminooccupiesspacenearomegafounddeviationrelievingstericclashcarboxypropylgrouprevealworryingtrendsenhancementmayalsoprovidemapimprovementStructuralbasisactivityextendedcephalosporinstwobaumannii

Similar Articles

Cited By