Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae.

Denis Saint-Marcoux, Bernard Billoud, Jane A Langdale, Bénédicte Charrier
Author Information
  1. Denis Saint-Marcoux: Department of Plant Sciences, University of Oxford Oxford, UK.
  2. Bernard Billoud: CNRS, Sorbonne Université, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff Roscoff, France.
  3. Jane A Langdale: Department of Plant Sciences, University of Oxford Oxford, UK.
  4. Bénédicte Charrier: CNRS, Sorbonne Université, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff Roscoff, France.

Abstract

Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

Keywords

References

  1. Nat Rev Genet. 2014 Jan;15(1):7-21 [PMID: 24296535]
  2. BMC Genomics. 2004 Apr 30;5(1):29 [PMID: 15119961]
  3. PLoS One. 2013 Aug 19;8(8):e71745 [PMID: 23977132]
  4. Nat Rev Genet. 2009 Feb;10(2):94-108 [PMID: 19148191]
  5. Pest Manag Sci. 2009 May;65(5):504-11 [PMID: 19206091]
  6. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  7. Curr Biol. 2014 Feb 17;24(4):465-70 [PMID: 24508168]
  8. PLoS One. 2013;8(3):e57122 [PMID: 23536760]
  9. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  10. New Phytol. 2008;177(2):319-332 [PMID: 18181960]
  11. Trends Plant Sci. 2012 Aug;17(8):468-77 [PMID: 22513108]
  12. Nat Rev Genet. 2009 Dec;10(12):833-44 [PMID: 19920851]
  13. New Phytol. 2014 Feb;201(3):781-794 [PMID: 24188410]
  14. Plant Physiol. 2014 May 14;165(3):1062-1075 [PMID: 24828307]
  15. Methods. 1996 Dec;10(3):283-8 [PMID: 8954839]
  16. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5247-52 [PMID: 23503846]
  17. Plant J. 2013 Apr;74(1):48-58 [PMID: 23437797]
  18. Methods Mol Biol. 2013;959:323-32 [PMID: 23299686]
  19. Nucleic Acids Res. 2011 Oct;39(18):e120 [PMID: 21737426]
  20. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  21. Bioinformatics. 2012 Dec 15;28(24):3211-7 [PMID: 23071270]
  22. Nature. 2010 Jun 03;465(7298):617-21 [PMID: 20520714]
  23. BMC Genomics. 2007 Aug 15;8:277 [PMID: 17697374]
  24. Plant Cell. 2003 Mar;15(3):583-96 [PMID: 12615934]
  25. BMC Genomics. 2009 May 26;10:246 [PMID: 19470167]
  26. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5254-9 [PMID: 20194744]
  27. Nat Rev Genet. 2009 Mar;10(3):155-9 [PMID: 19188922]
  28. Mol Carcinog. 1999 Jun;25(2):86-91 [PMID: 10365909]
  29. Sci Rep. 2014 Jan 14;4:3678 [PMID: 24419370]
  30. J Phycol. 2008 Oct;44(5):1269-81 [PMID: 27041723]
  31. PLoS Genet. 2009 May;5(5):e1000476 [PMID: 19424435]
  32. Front Plant Sci. 2015 Feb 19;6:68 [PMID: 25745426]
  33. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3814-8 [PMID: 7731989]
  34. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  35. Biotechniques. 2011 Mar;50(3):177-80 [PMID: 21486238]
  36. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  37. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  38. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  39. Methods Mol Biol. 2010;638:153-63 [PMID: 20238267]
  40. BMC Mol Biol. 2008 Aug 18;9:75 [PMID: 18710525]
  41. J Plant Res. 2010 Nov;123(6):807-13 [PMID: 20221666]
  42. Science. 1996 Nov 8;274(5289):998-1001 [PMID: 8875945]
  43. PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 [PMID: 21765801]
  44. Clin Chem. 2005 Oct;51(10):1973-81 [PMID: 16123149]
  45. Nat Methods. 2013 Jul;10(7):623-9 [PMID: 23685885]
  46. PLoS Genet. 2007 Jun;3(6):e101 [PMID: 17571927]
  47. Plant J. 1999 Oct;20(2):245-250 [PMID: 10571884]
  48. Plant Signal Behav. 2011 Dec;6(12):1889-92 [PMID: 22095146]
  49. Nat Protoc. 2006;1(2):586-603 [PMID: 17406286]
  50. Plant Physiol. 2007 May;144(1):155-72 [PMID: 17384159]

Grants

  1. G19201/Biotechnology and Biological Sciences Research Council

Word Cloud

Created with Highcharts 10.0.0microdissectionLCMcell-specificcapturetranscriptomicsbrownEctocarpusalgaeLaserRNAamplificationlaserfacilitatesisolationindividualcellstissuesectionscombinedtechniquesextremelypowerfultoolexamininggenome-wideexpressionprofilesspecificcell-typeswidelyusedaddressvariousbiologicalquestionsanimalplantsystemshoweverattemptmadefartransfertechnologymacroalgaeMacroalgaecollectionwidespreadeukaryoteslivingfreshmarinewaterlinecollectiveeffortpromotemolecularinvestigationsmacroalgalbiologydemonstratefeasibilityusingstudydevelopmentalgasiliculosusdescribeworkflowcomprisingcultivationfixationglassslidesillustrateeffectivenessprocedureshowqPCRdatametricsobtainedtranscriptomesgenerateduprightprostratefilamentssiliculosus:pathwaycelldifferentiationseaweed

Similar Articles

Cited By