A brief review of software tools for pangenomics.

Jingfa Xiao, Zhewen Zhang, Jiayan Wu, Jun Yu
Author Information
  1. Jingfa Xiao: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address: xiaojf@big.ac.cn.
  2. Zhewen Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  3. Jiayan Wu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  4. Jun Yu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

Since the proposal for pangenomic study, there have been a dozen software tools actively in use for pangenomic analysis. By the end of 2014, Panseq and the pan-genomes analysis pipeline (PGAP) ranked as the top two most popular packages according to cumulative citations of peer-reviewed scientific publications. The functions of the software packages and tools, albeit variable among them, include categorizing orthologous genes, calculating pangenomic profiles, integrating gene annotations, and constructing phylogenies. As epigenomic elements are being gradually revealed in prokaryotes, it is expected that pangenomic databases and toolkits have to be extended to handle information of detailed functional annotations for genes and non-protein-coding sequences including non-coding RNAs, insertion elements, and conserved structural elements. To develop better bioinformatic tools, user feedback and integration of novel features are both of essence.

Keywords

References

  1. Bioinformatics. 2011 Sep 1;27(17):2429-30 [PMID: 21765097]
  2. Nat Genet. 2011 Oct;43(10):956-63 [PMID: 21874002]
  3. PLoS One. 2011;6(9):e24988 [PMID: 21966396]
  4. BMC Genomics. 2011;12 Suppl 2:S6 [PMID: 21989220]
  5. BMC Genomics. 2011;12:523 [PMID: 22026465]
  6. J Genet Genomics. 2011 Dec 20;38(12):567-76 [PMID: 22196399]
  7. Bioinformatics. 2012 Feb 1;28(3):416-8 [PMID: 22130594]
  8. Genome Res. 2012 May;22(5):908-24 [PMID: 22369888]
  9. BMC Genomics. 2012;13:545 [PMID: 23051057]
  10. BMC Genomics. 2012;13:577 [PMID: 23114024]
  11. Nature. 2013 Jul 11;499(7457):209-13 [PMID: 23760476]
  12. Genet Mol Res. 2013;12(3):2982-9 [PMID: 24065654]
  13. Appl Environ Microbiol. 2013 Dec;79(24):7696-701 [PMID: 24096415]
  14. Virus Genes. 2013 Dec;47(3):550-5 [PMID: 23912978]
  15. BMC Genomics. 2014;15:8 [PMID: 24387194]
  16. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-51 [PMID: 24505072]
  17. Bioinformatics. 2014 May 1;30(9):1297-9 [PMID: 24420766]
  18. Genome Biol. 2013;14(9):R101 [PMID: 24034426]
  19. BMC Genomics. 2014;15:737 [PMID: 25168460]
  20. Nat Biotechnol. 2014 Oct;32(10):1045-52 [PMID: 25218520]
  21. MBio. 2014;5(6):e01867 [PMID: 25425232]
  22. Genome Biol. 2014;15(11):524 [PMID: 25410596]
  23. Curr Opin Microbiol. 2015 Feb;23:148-54 [PMID: 25483351]
  24. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5 [PMID: 16172379]
  25. Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1929-40 [PMID: 17062412]
  26. Genome Biol. 2007;8(12):R267 [PMID: 18088402]
  27. Appl Environ Microbiol. 2008 Aug;74(15):4703-10 [PMID: 18539806]
  28. Bioinformatics. 2009 Feb 1;25(3):309-14 [PMID: 19129208]
  29. BMC Genomics. 2010;11:181 [PMID: 20236513]
  30. Bioinformatics. 2010 May 1;26(9):1256-7 [PMID: 20219865]
  31. BMC Bioinformatics. 2010;11:461 [PMID: 20843356]

MeSH Term

Bacteria
Computational Biology
Databases, Factual
Genome
Genomics
Humans
Molecular Sequence Annotation
Open Reading Frames
Phylogeny
Software