Early telomerase inactivation accelerates aging independently of telomere length.

Zhengwei Xie, Kyle A Jay, Dana L Smith, Yi Zhang, Zairan Liu, Jiashun Zheng, Ruilin Tian, Hao Li, Elizabeth H Blackburn
Author Information
  1. Zhengwei Xie: Center for Quantitative Biology, School of Physics and The Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  2. Kyle A Jay: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  3. Dana L Smith: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  4. Yi Zhang: Center for Quantitative Biology, School of Physics and The Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  5. Zairan Liu: Center for Quantitative Biology, School of Physics and The Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  6. Jiashun Zheng: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  7. Ruilin Tian: Center for Quantitative Biology, School of Physics and The Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
  8. Hao Li: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: haoli@genome.ucsf.edu.
  9. Elizabeth H Blackburn: Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: elizabeth.blackburn@ucsf.edu.

Abstract

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.

References

  1. Mol Cell. 2004 May 21;14(4):515-22 [PMID: 15149600]
  2. Genetics. 2009 Nov;183(3):779-91 [PMID: 19704012]
  3. Genes Dev. 1999 Oct 1;13(19):2570-80 [PMID: 10521401]
  4. Cell. 1999 Jan 22;96(2):291-302 [PMID: 9988222]
  5. Cell. 1999 May 28;97(5):609-20 [PMID: 10367890]
  6. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1398-402 [PMID: 3513174]
  7. Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9316-21 [PMID: 12084816]
  8. Science. 1997 Apr 25;276(5312):561-7 [PMID: 9110970]
  9. Mol Cell. 1998 Sep;2(3):329-40 [PMID: 9774971]
  10. Mol Cell Biol. 1999 May;19(5):3848-56 [PMID: 10207108]
  11. Biol Cell. 2005 Oct;97(10):799-814 [PMID: 15760303]
  12. Nature. 2006 Apr 6;440(7085):824-8 [PMID: 16598261]
  13. Trends Cell Biol. 2008 Jul;18(7):337-46 [PMID: 18502129]
  14. Mol Cell. 2003 May;11(5):1379-87 [PMID: 12769860]
  15. Nat Rev Genet. 2012 Oct;13(10):693-704 [PMID: 22965356]
  16. Front Genet. 2013 Mar 13;4:26 [PMID: 23493417]
  17. Aging Cell. 2012 Aug;11(4):599-606 [PMID: 22498653]
  18. Cell. 2003 Feb 7;112(3):391-401 [PMID: 12581528]
  19. Nat Cell Biol. 2001 Nov;3(11):958-65 [PMID: 11715016]
  20. Genes Dev. 2003 Jul 15;17(14):1755-67 [PMID: 12865299]
  21. Eukaryot Cell. 2011 Aug;10(8):1131-42 [PMID: 21666075]
  22. Nature. 2014 Aug 14;512(7513):198-202 [PMID: 25079315]
  23. Cell. 1999 May 28;97(5):621-33 [PMID: 10367891]
  24. Nature. 2003 Nov 13;426(6963):194-8 [PMID: 14608368]
  25. Cell. 2009 Jul 10;138(1):90-103 [PMID: 19596237]
  26. Nucleic Acids Res. 2010 Oct;38(19):6490-501 [PMID: 20566477]
  27. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  28. PLoS One. 2012;7(11):e48275 [PMID: 23144860]
  29. Genes Dev. 1996 Jul 15;10(14):1822-34 [PMID: 8698241]
  30. Cell. 1995 Sep 8;82(5):823-9 [PMID: 7671310]
  31. Nat Genet. 2013 Apr;45(4):422-7, 427e1-2 [PMID: 23535734]
  32. Nucleic Acids Res. 2004;32(12):3712-23 [PMID: 15254273]
  33. DNA Repair (Amst). 2007 Nov1;6(11):1607-17 [PMID: 17618841]
  34. Annu Rev Biochem. 1988;57:349-74 [PMID: 3052277]
  35. Genes Dev. 2004 May 1;18(9):992-1006 [PMID: 15132993]
  36. Free Radic Biol Med. 2008 Oct 15;45(8):1167-77 [PMID: 18708137]
  37. Cell. 1993 Apr 23;73(2):347-60 [PMID: 8477448]
  38. J Cell Biol. 2012 Apr 16;197(2):253-66 [PMID: 22508510]
  39. Nat Rev Genet. 2007 Nov;8(11):835-44 [PMID: 17909538]
  40. Nature. 2010 Mar 25;464(7288):513-9 [PMID: 20336133]

Grants

  1. R01 GM070808/NIGMS NIH HHS
  2. T32 GM008284/NIGMS NIH HHS
  3. GM26259/NIGMS NIH HHS
  4. P50 GM081879/NIGMS NIH HHS
  5. AG043080/NIA NIH HHS
  6. GM070808/NIGMS NIH HHS
  7. R01 GM026259/NIGMS NIH HHS
  8. R01 AG043080/NIA NIH HHS
  9. R37 GM026259/NIGMS NIH HHS

MeSH Term

Cell Cycle
Chromosomes, Fungal
DNA Replication
Mitochondria
Ribonucleoside Diphosphate Reductase
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Telomerase
Telomere

Chemicals

Saccharomyces cerevisiae Proteins
RNR3 protein, S cerevisiae
Ribonucleoside Diphosphate Reductase
Telomerase

Word Cloud

Created with Highcharts 10.0.0mothertelomerasetelomereagingcellinactivationETIrequiredyeastanalysescellsshowtransientDNAwellsenescenceLTIlengthacceleratesTelomeraselong-termmaintenanceprotectionUsingsinglebuddingfoundevenearlydamageresponseDDRepisodesstochasticallyalteredcell-cycledynamicsacceleratedaccelerationexplainedincreasedreactiveoxygenspeciesROSSirproteinperturbationdeprotectedtelomeresphenotypesoccurredpopulationcausedlatemorphologicallydistinctgeneticallyuncoupledrescuedelevatingdNTPpoolscombinedgeneticsingle-cellcriticalshorteningcontinuouslyrespondreplicationstresslackotherwisenormalEarlyindependently

Similar Articles

Cited By