Neutral space analysis for a Boolean network model of the fission yeast cell cycle network.

Gonzalo A Ruz, Tania Timmermann, Javiera Barrera, Eric Goles
Author Information
  1. Gonzalo A Ruz: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolén, Santiago, Chile. gonzalo.ruz@uai.cl.
  2. Tania Timmermann: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolén, Santiago, Chile. tania.timmermann@uai.cl.
  3. Javiera Barrera: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolén, Santiago, Chile. javiera.barrera@uai.cl.
  4. Eric Goles: Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolén, Santiago, Chile. eric.chacc@uai.cl.

Abstract

BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle.
RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes.
CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.

References

  1. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4781-6 [PMID: 15037758]
  2. Bioinformatics. 2006 Apr 1;22(7):815-22 [PMID: 16418235]
  3. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7865-70 [PMID: 10884416]
  4. BMC Syst Biol. 2014;8:37 [PMID: 24669835]
  5. Biosystems. 2014 Jan;115:23-32 [PMID: 24212100]
  6. Bull Math Biol. 2013 Jun;75(6):939-66 [PMID: 23188157]
  7. J R Soc Interface. 2012 Sep 7;9(74):2365-82 [PMID: 22499125]
  8. PLoS One. 2008;3(2):e1672 [PMID: 18301750]
  9. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13591-6 [PMID: 17690244]
  10. PLoS Comput Biol. 2007 Feb 2;3(2):e15 [PMID: 17274682]
  11. Bioinformatics. 2007 Apr 1;23(7):866-74 [PMID: 17267426]
  12. Bioinformatics. 2006 Jul 15;22(14):e124-31 [PMID: 16873462]
  13. J Theor Biol. 1998 Jul 27;193(2):307-19 [PMID: 9714934]
  14. Science. 1998 Feb 13;279(5353):1045-7 [PMID: 9461438]
  15. J Theor Biol. 1969 Mar;22(3):437-67 [PMID: 5803332]
  16. Bioinformatics. 2004 Jun 12;20(9):1361-72 [PMID: 14962938]
  17. Plant Cell. 2004 Nov;16(11):2923-39 [PMID: 15486106]
  18. J Theor Biol. 2003 Jul 7;223(1):1-18 [PMID: 12782112]

MeSH Term

Cell Cycle
Cell Cycle Proteins
Computational Biology
Computer Graphics
Computer Simulation
Cyclin-Dependent Kinases
G1 Phase
Gene Regulatory Networks
Models, Biological
Neural Networks, Computer
Schizosaccharomyces

Chemicals

Cell Cycle Proteins
Cyclin-Dependent Kinases

Word Cloud

Created with Highcharts 10.0.0networksnetworkneutralwildtypespacefunctionalconnectedcomponentcellcyclecanyeastGRNfissiongraphfoundgeneralgeneregulatoryprocessesregulationexploreBooleanstate3differenceslevelalsopointBACKGROUND:InteractionsgenesproductsgiverisecomplexcircuitsknownenablecellsprocessinformationrespondexternalstimuliSeveralimportantlifedependaccuratecontext-specificexpressionanalyzedderegulationleadcanceranimalsdirectedappliedbiotechnologicalusingapproachstudyrobustnesspaperSchizosaccharomycespombeevolutionstrategygeneratecomposedsharesequencesRESULTS:simulationsgeneratedHammingdistance10disconnectedSignificantresttopologicalsignificantdistributionbasinattractionG1fixeddeterministicupdatingschemesCONCLUSIONS:mutatetimesreachreturnleaveproposedmethodconstructusedbiologicallyinterestingformulatenewbiologicalhypothesesstudyingNeutralanalysismodel

Similar Articles

Cited By