Bayesian Models for fMRI Data Analysis.

Linlin Zhang, Michele Guindani, Marina Vannucci
Author Information
  1. Linlin Zhang: Department of Statistics, Rice University, Houston, TX 77005, USA.
  2. Michele Guindani: Department of Biostatistics, UT M.D. Anderson Cancer Center, Houston, TX 77230, USA.
  3. Marina Vannucci: Department of Statistics, Rice University, Houston, TX 77005, USA.

Abstract

Functional magnetic resonance imaging (fMRI), a noninvasive neuroimaging method that provides an indirect measure of neuronal activity by detecting blood flow changes, has experienced an explosive growth in the past years. Statistical methods play a crucial role in understanding and analyzing fMRI data. Bayesian approaches, in particular, have shown great promise in applications. A remarkable feature of fully Bayesian approaches is that they allow a flexible modeling of spatial and temporal correlations in the data. This paper provides a review of the most relevant models developed in recent years. We divide methods according to the objective of the analysis. We start from spatio-temporal models for fMRI data that detect task-related activation patterns. We then address the very important problem of estimating brain connectivity. We also touch upon methods that focus on making predictions of an individual's brain activity or a clinical or behavioral response. We conclude with a discussion of recent integrative models that aim at combining fMRI data with other imaging modalities, such as EEG/MEG and DTI data, measured on the same subjects. We also briefly discuss the emerging field of imaging genetics.

Keywords

References

  1. Front Comput Neurosci. 2013 Nov 12;7:159 [PMID: 24282401]
  2. Neuroimage. 2012 Sep;62(3):1769-79 [PMID: 22634220]
  3. Neuroimage. 2002 Jan;15(1):1-15 [PMID: 11771969]
  4. Neuroimage. 2011 Jun 1;56(3):1202-21 [PMID: 21182971]
  5. Brain Connect. 2011;1(1):13-36 [PMID: 22432952]
  6. Magn Reson Med. 1991 Oct;21(2):288-95 [PMID: 1745127]
  7. IEEE Trans Med Imaging. 2004 Feb;23(2):213-31 [PMID: 14964566]
  8. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1223-8 [PMID: 20133824]
  9. Neuroimage. 2008 Aug 15;42(2):649-62 [PMID: 18565765]
  10. Neuroimage. 2013 Oct 15;80:475-88 [PMID: 23707675]
  11. Behav Genet. 2006 Mar;36(2):261-70 [PMID: 16408250]
  12. Neuroimage. 2014 Jul 15;95:162-75 [PMID: 24650600]
  13. Neuroimage. 2002 Jun;16(2):465-83 [PMID: 12030832]
  14. Hum Brain Mapp. 2007 Aug;28(8):764-84 [PMID: 17094118]
  15. Brain Struct Funct. 2009 Oct;213(6):525-33 [PMID: 19565262]
  16. Neuroimage. 2003 Jul;19(3):727-41 [PMID: 12880802]
  17. Neuroimage. 2006 Jul 15;31(4):1601-13 [PMID: 16540348]
  18. Neuroimage. 2003 Aug;19(4):1477-91 [PMID: 12948704]
  19. Cereb Cortex. 2009 Jan;19(1):72-8 [PMID: 18403396]
  20. J Magn Reson Imaging. 2001 Apr;13(4):534-46 [PMID: 11276097]
  21. Biostatistics. 2009 Apr;10(2):219-27 [PMID: 18723853]
  22. Neuroimage. 2009 Jan 15;44(2):373-84 [PMID: 18845262]
  23. Neuroimage. 2005 Mar;25(1):206-18 [PMID: 15734356]
  24. PLoS Biol. 2009 Feb 17;7(2):e33 [PMID: 19226186]
  25. Neuroimage. 2006 Apr 15;30(3):753-67 [PMID: 16368248]
  26. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):217-24 [PMID: 17354775]
  27. Hum Brain Mapp. 1998;6(3):160-88 [PMID: 9673671]
  28. Neuroimage. 2004 Apr;21(4):1748-61 [PMID: 15050595]
  29. Neuroimage. 2012 Jan 16;59(2):1772-82 [PMID: 21907810]
  30. Neuroimage. 2003 Jul;19(3):1240-9 [PMID: 12880849]
  31. J Am Stat Assoc. 2013 Jan 1;108(503): [PMID: 24298194]
  32. Biometrics. 2009 Dec;65(4):1041-51 [PMID: 19210732]
  33. Neuroimage. 2004 Nov;23(3):806-26 [PMID: 15528082]
  34. Neuroimage. 2003 Aug;19(4):1273-302 [PMID: 12948688]
  35. Biometrics. 2004 Sep;60(3):812-9 [PMID: 15339306]
  36. Annu Rev Stat Appl. 2014 Jan;1:61-85 [PMID: 25309940]
  37. AJNR Am J Neuroradiol. 2013 Feb;34(2):340-5 [PMID: 22790250]
  38. Magn Reson Imaging. 2003 Dec;21(10):1251-61 [PMID: 14725933]
  39. Neuroimage. 2011 Sep 15;58(2):339-61 [PMID: 21477655]
  40. Neuroimage. 2008 Jun;41(2):398-407 [PMID: 18406629]
  41. Stat Methods Med Res. 2013 Aug;22(4):364-81 [PMID: 22627277]
  42. Biometrics. 2001 Jun;57(2):554-62 [PMID: 11414583]
  43. Neuroimage. 2007 May 15;36(1):69-87 [PMID: 17408972]
  44. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  45. Neuroimage. 2004;23 Suppl 1:S234-49 [PMID: 15501094]
  46. Neuroimage. 1999 May;9(5):526-33 [PMID: 10329292]
  47. Neuroimage. 2010 Aug 1;52(1):97-108 [PMID: 20211266]
  48. Neuroimage. 2005 Feb 15;24(4):997-1011 [PMID: 15670677]
  49. Neuroimage. 2005 Jan 15;24(2):350-62 [PMID: 15627578]
  50. J Am Stat Assoc. 2011 Mar 1;106(493):124-134 [PMID: 21706069]
  51. J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):59-83 [PMID: 25642138]
  52. Hum Brain Mapp. 2010 Oct;31(10):1512-31 [PMID: 20091791]
  53. Front Neuroinform. 2014 Mar 26;8:29 [PMID: 24723883]
  54. Inf Process Med Imaging. 2007;20:482-94 [PMID: 17633723]
  55. Hum Brain Mapp. 2006 May;27(5):462-70 [PMID: 16568419]
  56. Neuroimage. 2012 Nov 15;63(3):1519-31 [PMID: 22951257]
  57. Magn Reson Imaging. 1999 Jul;17(6):795-815 [PMID: 10402587]
  58. Neuroimage. 2013 Jul 15;75:165-175 [PMID: 23501054]
  59. Neuroimage. 2007 Feb 1;34(3):1108-25 [PMID: 17157034]
  60. Neuroimage. 2012 May 1;60(4):2096-106 [PMID: 22343126]
  61. Hum Brain Mapp. 2006 Mar;27(3):267-76 [PMID: 16092131]
  62. IEEE Trans Med Imaging. 2003 Mar;22(3):315-22 [PMID: 12760549]
  63. Bayesian Anal. 2014;9(3):699-732 [PMID: 25530824]
  64. Neuroimage. 2010 Mar;50(1):150-61 [PMID: 19958837]
  65. Neuroimage. 2008 Oct 1;42(4):1560-8 [PMID: 18602482]
  66. Neuroimage. 2008 Jan 1;39(1):146-56 [PMID: 17936016]
  67. Neuroimage. 2008 Jun;41(2):408-23 [PMID: 18387821]
  68. Neuroimage. 2012 Jan 16;59(2):1228-9 [PMID: 21867760]
  69. Neuroimage. 2014 Nov 15;102 Pt 1:184-91 [PMID: 24103849]
  70. Neuroimage. 2011 Jun 1;56(3):1035-42 [PMID: 21396456]
  71. J Biosci. 2007 Jan;32(1):129-44 [PMID: 17426386]
  72. Neuroimage. 2012 Jul 16;61(4):866-75 [PMID: 22440650]
  73. Neuroimage. 2011 Jan 15;54(2):807-23 [PMID: 20884354]
  74. Neuroimage. 2003 Oct;20(2):802-15 [PMID: 14568453]
  75. Neuroimage. 2010 Oct 15;53(1):65-77 [PMID: 20561919]
  76. Biostatistics. 2004 Apr;5(2):155-76 [PMID: 15054023]
  77. Neuroimage. 2014 Nov 15;102 Pt 1:24-34 [PMID: 23732883]
  78. Neuroimage. 2010 Nov 15;53(3):1147-59 [PMID: 20624472]
  79. Physica D. 2009 Nov 1;238(21):2089-2118 [PMID: 19862351]
  80. Ann Appl Stat. 2014 Sep;8(3):1800-1824 [PMID: 25426185]
  81. Neuroimage. 2006 Apr 15;30(3):794-812 [PMID: 16364661]
  82. IEEE Trans Med Imaging. 2005 Jan;24(1):1-11 [PMID: 15638182]
  83. Stat Methods Med Res. 2013 Aug;22(4):382-97 [PMID: 22743280]
  84. Neuroimage. 2009 Mar;45(1 Suppl):S173-86 [PMID: 19059349]
  85. Neuroimage. 2011 Jun 15;56(4):2089-99 [PMID: 21459150]
  86. Neuroimage. 2000 Oct;12(4):466-77 [PMID: 10988040]
  87. Neuroimage. 2002 Jan;15(1):217-32 [PMID: 11771991]
  88. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  89. Neuroimage. 2012 Jul 16;61(4):907-20 [PMID: 22484408]
  90. Cereb Cortex. 1997 Dec;7(8):768-78 [PMID: 9408041]
  91. Neuroimage. 2007 Sep 1;37(3):749-60 [PMID: 17644415]
  92. Neuroimage. 2011 Mar 1;55(1):113-32 [PMID: 21130173]
  93. Neuroimage. 2014 Nov 15;102 Pt 1:1-2 [PMID: 24830838]
  94. Neuroimage. 2012 Aug 15;62(2):801-10 [PMID: 22063092]
  95. Int J Biomed Imaging. 2011;2011:350838 [PMID: 21754916]
  96. Hum Brain Mapp. 2014 Jul;35(7):3314-31 [PMID: 24222313]
  97. Hum Brain Mapp. 2009 Jan;30(1):241-55 [PMID: 18072279]
  98. Neuroimage. 1998 Jan;7(1):30-40 [PMID: 9500830]
  99. Biometrics. 2013 Mar;69(1):184-96 [PMID: 23379536]
  100. J Comput Graph Stat. 2014 Jan 1;23(1):46-64 [PMID: 24729670]
  101. Neuroimage. 2010 Jan 1;49(1):442-56 [PMID: 19646535]
  102. Neuroimage. 1995 Mar;2(1):45-53 [PMID: 9343589]
  103. Hum Brain Mapp. 2008 Sep;29(9):1092-109 [PMID: 17924543]
  104. J Cereb Blood Flow Metab. 1997 Jan;17(1):64-72 [PMID: 8978388]
  105. Neuroimage. 2011 Sep 15;58(2):442-57 [PMID: 21310247]
  106. Neuroimage. 2008 May 1;40(4):1581-94 [PMID: 18314351]
  107. Neuroimage. 2010 Apr 15;50(3):1126-41 [PMID: 20026230]

Grants

  1. P30 CA016672/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0fMRIdataBayesianimagingmethodsmodelsprovidesactivityyearsapproachesrecentbrainalsoModelsFunctionalmagneticresonancenoninvasiveneuroimagingmethodindirectmeasureneuronaldetectingbloodflowchangesexperiencedexplosivegrowthpastStatisticalplaycrucialroleunderstandinganalyzingparticularshowngreatpromiseapplicationsremarkablefeaturefullyallowflexiblemodelingspatialtemporalcorrelationspaperreviewrelevantdevelopeddivideaccordingobjectiveanalysisstartspatio-temporaldetecttask-relatedactivationpatternsaddressimportantproblemestimatingconnectivitytouchuponfocusmakingpredictionsindividual'sclinicalbehavioralresponseconcludediscussionintegrativeaimcombiningmodalitiesEEG/MEGDTImeasuredsubjectsbrieflydiscussemergingfieldgeneticsDataAnalysisStatisticsBrainConnectivityClassificationPredictionSpatio-TemporalActivation

Similar Articles

Cited By