Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish.

José M Simões, Eduardo N Barata, Rayna M Harris, Lauren A O'Connell, Hans A Hofmann, Rui F Oliveira
Author Information
  1. José M Simões: Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal. jsimoes@ispa.pt.
  2. Eduardo N Barata: CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. ebarata@uevora.pt.
  3. Rayna M Harris: Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. rayna.harris@gmail.com.
  4. Lauren A O'Connell: Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. loconnell@utexas.edu.
  5. Hans A Hofmann: Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. hans@utexas.edu.
  6. Rui F Oliveira: Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal. ruiol@ispa.pt.

Abstract

BACKGROUND: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status.
RESULTS: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli.
CONCLUSIONS: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.

Associated Data

GEO | GSE54468

References

  1. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14171-6 [PMID: 10570217]
  2. J Neurosci. 2000 Jun 15;20(12):4740-4 [PMID: 10844043]
  3. Bioessays. 2001 Jan;23(1):62-8 [PMID: 11135310]
  4. Nat Neurosci. 2001 Mar;4(3):289-96 [PMID: 11224546]
  5. J Neurobiol. 2003 Jan;54(1):272-82 [PMID: 12486709]
  6. Genome Biol. 2002;3(12):RESEARCH0071 [PMID: 12537560]
  7. BMC Genomics. 2004 Jul 06;5(1):42 [PMID: 15238158]
  8. J Hered. 2005 May-Jun;96(3):261-78 [PMID: 15653555]
  9. Nat Rev Genet. 2005 Apr;6(4):257-70 [PMID: 15761469]
  10. J Comp Neurol. 2005 Jun 20;487(1):28-41 [PMID: 15861460]
  11. J Exp Biol. 2005 Jun;208(Pt 11):2037-43 [PMID: 15914647]
  12. Bioinformatics. 2005 Aug 15;21(16):3448-9 [PMID: 15972284]
  13. J Neurobiol. 2005 Oct;65(1):1-11 [PMID: 16003760]
  14. Proc Biol Sci. 2005 Aug 22;272(1573):1655-62 [PMID: 16087419]
  15. Physiol Behav. 2006 Sep 30;89(2):164-70 [PMID: 16828128]
  16. Brain Res. 2007 Jan 19;1129(1):130-41 [PMID: 17169337]
  17. Behav Brain Res. 2007 May 16;179(2):258-64 [PMID: 17367877]
  18. Behav Brain Res. 2007 May 16;179(2):314-20 [PMID: 17374406]
  19. Prog Neurobiol. 2007 Jun;82(2):80-6 [PMID: 17433527]
  20. Proc Biol Sci. 2008 Feb 22;275(1633):393-402 [PMID: 18055387]
  21. BMC Biol. 2007 Dec 12;5:54 [PMID: 18076759]
  22. BMC Genomics. 2008 Feb 25;9:96 [PMID: 18298844]
  23. J Chem Ecol. 2008 Apr;34(4):438-49 [PMID: 18379847]
  24. Am Nat. 2008 Oct;172(4):497-507 [PMID: 18707530]
  25. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 [PMID: 18775941]
  26. Front Neurosci. 2008 Jul 07;2(1):47-55 [PMID: 18982106]
  27. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  28. Neuroscience. 2009 Jan 23;158(2):412-25 [PMID: 18992791]
  29. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15400-5 [PMID: 19706434]
  30. Mol Ecol. 2009 Sep;18(18):3763-80 [PMID: 19732339]
  31. Behav Brain Res. 2010 Dec 1;213(2):208-17 [PMID: 20466023]
  32. Bioinformatics. 2011 Feb 1;27(3):431-2 [PMID: 21149340]
  33. Science. 2011 Jun 3;332(6034):1161-2 [PMID: 21636765]
  34. Integr Comp Biol. 2009 Oct;49(4):423-40 [PMID: 21665831]
  35. Integr Comp Biol. 2009 Dec;49(6):644-59 [PMID: 21665847]
  36. Integr Comp Biol. 2009 Dec;49(6):660-73 [PMID: 21665848]
  37. Proc Biol Sci. 2012 Feb 7;279(1728):434-43 [PMID: 21733892]
  38. Horm Behav. 2012 Feb;61(2):212-7 [PMID: 22206822]
  39. J Chem Neuroanat. 2012 Dec;46(1-2):51-66 [PMID: 23022747]
  40. J Fish Biol. 2012 Dec;81(7):2127-50 [PMID: 23252731]
  41. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 [PMID: 23482509]
  42. Front Neural Circuits. 2013 Apr 11;7:62 [PMID: 23596397]
  43. J Neuroendocrinol. 2013 Jul;25(7):644-54 [PMID: 23631684]
  44. Gen Comp Endocrinol. 2014 Jan 1;195:107-15 [PMID: 24188887]
  45. Adv Exp Med Biol. 2014;781:149-68 [PMID: 24277299]
  46. Trends Neurosci. 1989 Mar;12(3):94-101 [PMID: 2469224]
  47. Biol Bull. 1992 Aug;183(1):173-177 [PMID: 29304572]
  48. Brain Res. 1994 Jun 13;648(1):148-51 [PMID: 7922516]
  49. Front Neuroendocrinol. 1993 Jul;14(3):173-213 [PMID: 8349003]
  50. Horm Behav. 1996 Mar;30(1):2-12 [PMID: 8724173]

MeSH Term

Animals
Behavior, Animal
Brain
Cichlids
Gene Expression Regulation
Genetic Fitness
Nerve Net
Odorants
Social Environment

Word Cloud

Created with Highcharts 10.0.0socialexpressionplasticitychangesinformationgeneolfactoryresponsedifferentbrainbehaviorneuromolecularstimulichemicalrapidSocialimpactbehavioralunderlyingstatesenvironmenttestodorsdominantmalesdominanceresultscichlidBACKGROUND:pervasivefeatureanimalAnimalsadjustdailylifetransitionslife-historystagesabilityDarwinianfitnessmayachievedeitherrewiringbiochemicallyswitchingnodesneuralnetworkperceivedIndependentproximatemechanismslevelreliesregulationneurogenomicemergeswitchesorchestratedsignalingpathwaysinterfacegenotypehypothesischaracterizingprofileMozambiqueTilapiaOreochromismossambicusspeciesrichrepertoirebehaviorsvisualconveyedconspecificsSpecificallyincreaseurinationfrequencyagonistencounterscourtshipconveyreflectingstatusRESULTS:recordedelectro-olfactogramsextentepitheliumcandiscriminatesubordinatewellpre-post-spawningfemalesperformedgenome-scaleanalysisbulbcortexhomologorderidentifysystemsinvolvedprocessingCONCLUSIONS:showconspecifics'majortranscriptomecueselicitingspecificpatternsconfirmrolegenomicmechanismreinforceideaextensivetranscriptionalgenomesespeciallyconveyingreproductiveinducephysiologicalfish

Similar Articles

Cited By (8)