Plant-derived antifungal agent poacic acid targets β-1,3-glucan.

Jeff S Piotrowski, Hiroki Okada, Fachuang Lu, Sheena C Li, Li Hinchman, Ashish Ranjan, Damon L Smith, Alan J Higbee, Arne Ulbrich, Joshua J Coon, Raamesh Deshpande, Yury V Bukhman, Sean McIlwain, Irene M Ong, Chad L Myers, Charles Boone, Robert Landick, John Ralph, Mehdi Kabbage, Yoshikazu Ohya
Author Information
  1. Jeff S Piotrowski: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703; jpiotrowski@wisc.edu ohya@k.u-tokyo.ac.jp.
  2. Hiroki Okada: Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561;
  3. Fachuang Lu: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  4. Sheena C Li: RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan 351-0198;
  5. Li Hinchman: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  6. Ashish Ranjan: Departments of Plant Pathology and.
  7. Damon L Smith: Departments of Plant Pathology and.
  8. Alan J Higbee: Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
  9. Arne Ulbrich: Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
  10. Joshua J Coon: Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
  11. Raamesh Deshpande: Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455; and.
  12. Yury V Bukhman: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  13. Sean McIlwain: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  14. Irene M Ong: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  15. Chad L Myers: Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455; and.
  16. Charles Boone: RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan 351-0198; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1.
  17. Robert Landick: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  18. John Ralph: Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53703;
  19. Mehdi Kabbage: Departments of Plant Pathology and.
  20. Yoshikazu Ohya: Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561; jpiotrowski@wisc.edu ohya@k.u-tokyo.ac.jp.

Abstract

A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.

Keywords

References

  1. Eukaryot Cell. 2012 Jul;11(7):952-60 [PMID: 22581527]
  2. Environ Sci Pollut Res Int. 2013 Mar;20(3):1574-85 [PMID: 22890509]
  3. J Biol Chem. 2010 Dec 31;285(53):41947-60 [PMID: 20972263]
  4. Genes Cells. 2002 Jan;7(1):1-9 [PMID: 11856368]
  5. Antimicrob Agents Chemother. 2010 May;54(5):2244-7 [PMID: 20194697]
  6. Mol Biol Cell. 2014 Jan;25(2):222-33 [PMID: 24258022]
  7. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  8. Arch Microbiol. 1992;158(2):115-26 [PMID: 1417414]
  9. Bioorg Med Chem. 2012 Mar 15;20(6):1952-60 [PMID: 22261022]
  10. Mol Microbiol. 2002 Nov;46(4):1011-22 [PMID: 12421307]
  11. Drugs. 1997 Nov;54(5):657-78 [PMID: 9360056]
  12. Science. 2010 Jan 22;327(5964):425-31 [PMID: 20093466]
  13. J Biol Chem. 2001 Jul 20;276(29):26923-30 [PMID: 11337502]
  14. Microb Biotechnol. 2008 Nov;1(6):497-506 [PMID: 21261870]
  15. Analyst. 2013 Nov 7;138(21):6683-92 [PMID: 24040649]
  16. Eukaryot Cell. 2003 Dec;2(6):1200-10 [PMID: 14665455]
  17. Bioinformatics. 2004 Dec 12;20(18):3710-5 [PMID: 15297299]
  18. Antimicrob Agents Chemother. 2006 Jun;50(6):2058-63 [PMID: 16723566]
  19. Curr Opin Chem Biol. 2011 Feb;15(1):66-78 [PMID: 21093351]
  20. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1368-73 [PMID: 19164763]
  21. Science. 2013 Aug 2;341(6145):514-9 [PMID: 23908230]
  22. Sabouraudia. 1981 Jun;19(2):97-110 [PMID: 7020114]
  23. Appl Microbiol Biotechnol. 2011 Mar;89(5):1653-63 [PMID: 20972783]
  24. G3 (Bethesda). 2014 Jan 10;4(1):11-8 [PMID: 24192834]
  25. Eur J Biochem. 1995 Aug 1;231(3):845-54 [PMID: 7649185]
  26. Adv Genet. 2013;81:33-82 [PMID: 23419716]
  27. Genetics. 2003 Oct;165(2):517-29 [PMID: 14573466]
  28. Mol Syst Biol. 2013 Jun 18;9:674 [PMID: 23774757]
  29. BMC Syst Biol. 2013 Jul 03;7:54 [PMID: 23822767]
  30. Bioresour Technol. 2002 May;83(1):1-11 [PMID: 12058826]
  31. J Biol Chem. 2005 Mar 4;280(9):8275-84 [PMID: 15590673]
  32. Chemosphere. 2009 Mar;74(9):1165-70 [PMID: 19138785]
  33. ACS Chem Biol. 2014 Jan 17;9(1):247-57 [PMID: 24117378]
  34. FEMS Yeast Res. 2012 May;12(3):293-304 [PMID: 22129199]
  35. PLoS One. 2010 Apr 14;5(4):e10177 [PMID: 20418956]
  36. Phytopathology. 2008 Jun;98(6):736-42 [PMID: 18944299]
  37. J Mol Microbiol Biotechnol. 2001 Apr;3(2):207-14 [PMID: 11321575]
  38. Genome Res. 2009 Oct;19(10):1836-42 [PMID: 19622793]
  39. Annu Rev Phytopathol. 2006;44:489-509 [PMID: 16722808]
  40. J Agric Food Chem. 2006 Nov 29;54(24):9140-4 [PMID: 17117802]
  41. Biotechnol Lett. 2011 Feb;33(2):285-92 [PMID: 20960220]
  42. Bioresour Technol. 2010 Dec;101(23):8915-22 [PMID: 20667714]
  43. Front Microbiol. 2014 Mar 14;5:90 [PMID: 24672514]
  44. J Cell Biol. 2003 Jul 7;162(1):85-97 [PMID: 12847085]
  45. Cell. 2006 Aug 11;126(3):611-25 [PMID: 16901791]
  46. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19015-20 [PMID: 16365294]
  47. PLoS One. 2013 Apr 24;8(4):e61748 [PMID: 23637899]
  48. Mol Cell. 2013 Aug 22;51(4):519-30 [PMID: 23891562]
  49. Mol Syst Biol. 2011 Nov 08;7:544 [PMID: 22068327]
  50. Toxicol Sci. 2008 Jan;101(1):140-51 [PMID: 17785683]
  51. Yeast. 2001 Jun 30;18(9):827-40 [PMID: 11427965]

Grants

  1. R01 HG005084/NHGRI NIH HHS
  2. R01 HG005853/NHGRI NIH HHS
  3. R01HG005853/NHGRI NIH HHS
  4. 1R01GM104975-01/NIGMS NIH HHS
  5. 1R01HG005084-01A1/NHGRI NIH HHS
  6. R01 GM104975/NIGMS NIH HHS

MeSH Term

Caspofungin
Cell Membrane
Cell Wall
Coumaric Acids
Dose-Response Relationship, Drug
Drug Synergism
Echinocandins
Fungicides, Industrial
Genomics
Hydrolysis
Inhibitory Concentration 50
Lignin
Lipopeptides
Plant Extracts
Poaceae
Saccharomyces cerevisiae
Stilbenes
beta-Glucans

Chemicals

Coumaric Acids
Echinocandins
Fungicides, Industrial
Lipopeptides
Plant Extracts
Stilbenes
beta-Glucans
poacic acid
lignocellulose
Lignin
beta-1,3-glucan
Caspofungin

Word Cloud

Created with Highcharts 10.0.0acidpoaciccellwallβ-13-glucanantifungallignocellulosichydrolysatesdiscoveryfoundgenomicsSaccharomycescerevisiaesynthesisgenescellstreatedsclerotiorumfungalagentriseresistancecurrentantifungalsnecessitatesstrategiesidentifyalternativesourceseffectivefungicidesreportpotentcompoundgrassesChemicalusingshowedlossmaintenanceconferredincreasedsensitivityMorphologicalanalysisrevealedbehavedsimilarlywall-targetingdrugsmutantsdeletionsinvolvedprocessesrelatedbiogenesisPoaciccausesrapidlysissynergisticcaspofunginfluconazolecellulartargetidentifiedlocalizedinhibitedvivovitroapparentlydirectlybindingactivityglucanlayerinhibitsgrowthfungiSclerotiniaAlternariasolaniwelloomycetePhytophthorasojaesingleapplicationleavesinfectedbroad-rangepathogenSsubstantiallyreducedlesiondevelopmentnaturaltargetinghighlightspotentialsideuseproductsgeneratedprocessingrenewablebiomasstowardbiofuelssourcevaluablebioactivecompoundsclarifiesnaturemechanismfermentationinhibitorsPlant-derivedtargetschemicalhigh-dimensionalmorphometrics

Similar Articles

Cited By