Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.

Aimad El Habachi, Florent Moissenet, Sonia Duprey, Laurence Cheze, Raphaël Dumas
Author Information
  1. Aimad El Habachi: Université de Lyon, 69622, Lyon, France.

Abstract

Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.

References

  1. J Biomech. 2014 Jan 22;47(2):596-601 [PMID: 24332615]
  2. J Biomech. 1997 Nov-Dec;30(11-12):1123-31 [PMID: 9456380]
  3. J Biomech. 2012 Oct 11;45(15):2719-23 [PMID: 22964018]
  4. J Biomech. 2010 Oct 19;43(14):2858-62 [PMID: 20701914]
  5. J Biomech Eng. 1993 Nov;115(4A):344-9 [PMID: 8309227]
  6. Hum Mov Sci. 2007 Apr;26(2):306-19 [PMID: 17343945]
  7. J Biomech. 2006;39(8):1531-6 [PMID: 15970198]
  8. J Appl Biomech. 2014 Jun;30(3):446-60 [PMID: 24347565]
  9. J Biomech. 2010 Jan 19;43(2):268-73 [PMID: 19879581]
  10. Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84 [PMID: 17558646]
  11. Proc Inst Mech Eng H. 2010;224(8):927-43 [PMID: 20923112]
  12. J Biomech. 2015 Jan 21;48(2):233-7 [PMID: 25512017]
  13. Gait Posture. 2005 Feb;21(2):226-37 [PMID: 15639401]
  14. Med Biol Eng Comput. 2007 Mar;45(3):305-13 [PMID: 17295023]
  15. J Appl Biomech. 2010 May;26(2):142-9 [PMID: 20498485]
  16. J Biomech. 1986;19(8):589-96 [PMID: 3771581]
  17. J Biomech. 2013 Nov 15;46(16):2778-86 [PMID: 24074941]
  18. J Biomech Eng. 2008 Feb;130(1):014502 [PMID: 18298193]
  19. Comput Methods Biomech Biomed Engin. 2014;17 Suppl 1:76-7 [PMID: 25074172]
  20. J Neuroeng Rehabil. 2012 Mar 30;9:18 [PMID: 22463378]
  21. Med Eng Phys. 2005 Jul;27(6):537-41 [PMID: 15990070]
  22. Proc Inst Mech Eng H. 2012 Sep;226(9):660-9 [PMID: 23025166]
  23. Proc Inst Mech Eng H. 2011 Jun;225(6):621-6 [PMID: 22034745]
  24. Proc Inst Mech Eng H. 2010;224(9):1073-83 [PMID: 21053772]
  25. J Biomech. 2015 Apr 13;48(6):1141-6 [PMID: 25655463]
  26. J Biomech. 1993 Apr-May;26(4-5):485-99 [PMID: 8478351]
  27. J Biomech. 2007;40(10):2150-7 [PMID: 17169365]
  28. Comput Methods Biomech Biomed Engin. 2012;15 Suppl 1:183-5 [PMID: 23009472]
  29. J Biomech. 2013 Sep 3;46(13):2186-93 [PMID: 23891175]
  30. J Biomech. 2012 May 11;45(8):1463-71 [PMID: 22507351]
  31. Comput Methods Biomech Biomed Engin. 2015;18(14):1555-63 [PMID: 24963785]
  32. Proc Inst Mech Eng H. 2012 Feb;226(2):82-94 [PMID: 22468460]
  33. J Biomech. 2008 Nov 14;41(15):3236-42 [PMID: 18804767]
  34. Gait Posture. 2005 Feb;21(2):212-25 [PMID: 15639400]
  35. IEEE Trans Biomed Eng. 2007 May;54(5):782-93 [PMID: 17518274]
  36. Gait Posture. 2012 Mar;35(3):517-21 [PMID: 22245226]
  37. Med Biol Eng Comput. 2007 Mar;45(3):315-22 [PMID: 17252233]
  38. Gait Posture. 2008 May;27(4):578-88 [PMID: 17889542]
  39. Comput Methods Biomech Biomed Engin. 2010;13(2):171-83 [PMID: 19693717]
  40. Gait Posture. 2011 Feb;33(2):158-64 [PMID: 21247765]
  41. Ann Biomed Eng. 2015 May;43(5):1098-111 [PMID: 25404535]
  42. Comput Methods Biomech Biomed Engin. 2012;15(7):745-51 [PMID: 21491263]
  43. J Biomech. 2003 Jan;36(1):125-9 [PMID: 12485647]
  44. J Biomech. 2005 Mar;38(3):621-6 [PMID: 15652563]
  45. PLoS One. 2014 Nov 12;9(11):e112625 [PMID: 25390896]
  46. J Biomech. 2014 Sep 22;47(12):2863-8 [PMID: 25129166]
  47. J Biomech. 2014 Sep 22;47(12 ):3217-21 [PMID: 25169658]
  48. J Biomech. 2006;39(11):2087-95 [PMID: 16085076]
  49. Gait Posture. 2009 Jan;29(1):119-22 [PMID: 18768320]
  50. J Biomech. 2012 Sep 21;45(14):2476-80 [PMID: 22867762]
  51. Proc Inst Mech Eng H. 2012 Feb;226(2):133-45 [PMID: 22468465]
  52. Proc Inst Mech Eng H. 2012 Feb;226(2):161-9 [PMID: 22468467]
  53. Proc Inst Mech Eng H. 2012 Feb;226(2):146-60 [PMID: 22468466]
  54. J Biomech. 2010 May 7;43(7):1231-6 [PMID: 20189182]
  55. Comput Methods Biomech Biomed Engin. 2015 Aug;18(11):1238-1251 [PMID: 24641349]
  56. Gait Posture. 2010 Jan;31(1):1-8 [PMID: 19853455]
  57. Ann Biomed Eng. 2007 Sep;35(9):1632-42 [PMID: 17546504]
  58. Langenbecks Arch Surg. 2003 Oct;388(5):291-7 [PMID: 13680238]
  59. J Biomech. 2010 Jul 20;43(10):1876-83 [PMID: 20392450]
  60. J Biomech. 2002 Apr;35(4):543-8 [PMID: 11934426]
  61. J Biomech. 2006;39(11):2055-63 [PMID: 16084520]

MeSH Term

Biomechanical Phenomena
Gait
Humans
Joints
Lower Extremity
Male
Middle Aged
Models, Biological
Range of Motion, Articular

Word Cloud

Created with Highcharts 10.0.0parametersmulti-bodyjointanalysislowerlimbsensitivityskinmodelspositionsmodelconstraintsmarkerskinematicsstudyglobalankletibiofemoralpatellofemorale25embeddedhingeaxismmligamentsoptimisationusedgaitdistancesmeasuredmodel-determinedmarkeranglesdisplacementsSensitivitytypicalpartbiomechanicalevaluationanalysesmainlyperformedmusculoskeletalrarelydealsachievedintroducesanatomicaljointsaimtakeaccountuncertaintygcmsegmentsorientationorigininsertionusingstatisticaldistributionspropagatemethodcomputationwillallowusidentifyinfluentialminimumobjectivefunctionisumsquaredquantifyinfluenceFourier-basedalgorithmcoupledLatinhypercubesamplingshowsmotorsaykinematichighlyinfluencingobtainedexampleshankpelvisresultingstandarddeviationsreach36°12ThereforepersonalisationcustomisationidentificationsensitivemayconsideredessentialGlobal

Similar Articles

Cited By