A genomic comparison of two termites with different social complexity.

Judith Korb, Michael Poulsen, Haofu Hu, Cai Li, Jacobus J Boomsma, Guojie Zhang, Jürgen Liebig
Author Information
  1. Judith Korb: Department of Evolutionary Biology and Ecology, Institute of Biology I, University of Freiburg Freiburg, Germany.
  2. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, Centre for Social Evolution, University of Copenhagen Copenhagen, Denmark.
  3. Haofu Hu: China National Genebank, BGI-Shenzhen Shenzhen, China.
  4. Cai Li: China National Genebank, BGI-Shenzhen Shenzhen, China ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen Copenhagen, Denmark.
  5. Jacobus J Boomsma: Section for Ecology and Evolution, Department of Biology, Centre for Social Evolution, University of Copenhagen Copenhagen, Denmark.
  6. Guojie Zhang: Section for Ecology and Evolution, Department of Biology, Centre for Social Evolution, University of Copenhagen Copenhagen, Denmark ; China National Genebank, BGI-Shenzhen Shenzhen, China.
  7. Jürgen Liebig: School of Life Sciences, Arizona State University Tempe, AZ, USA.

Abstract

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothesis for further testing.

Keywords

References

  1. Naturwissenschaften. 2008 Sep;95(9):859-67 [PMID: 18516576]
  2. Curr Biol. 2007 Aug 21;17(16):R693-702 [PMID: 17714663]
  3. Genetics. 2005 Dec;171(4):1847-59 [PMID: 16157672]
  4. PLoS Genet. 2012;8(8):e1002930 [PMID: 22952454]
  5. PLoS Genet. 2011 Feb 10;7(2):e1002007 [PMID: 21347285]
  6. Proc Natl Acad Sci U S A. 1923 Dec;9(12):424-8 [PMID: 16586922]
  7. Insect Mol Biol. 2010 Oct;19(5):669-74 [PMID: 20561089]
  8. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 21;368(1613):20120050 [PMID: 23339241]
  9. Nature. 2003 Nov 6;426(6962):33-8 [PMID: 14603309]
  10. Biochem Soc Trans. 1996 Feb;24(1):289-91 [PMID: 8674689]
  11. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  12. Naturwissenschaften. 2009 Feb;96(2):315-9 [PMID: 19034403]
  13. Biol Lett. 2007 Jun 22;3(3):331-5 [PMID: 17412673]
  14. Proc Biol Sci. 2012 Jul 7;279(1738):2662-71 [PMID: 22398169]
  15. Biol Rev Camb Philos Soc. 2008 Aug;83(3):295-313 [PMID: 18979593]
  16. J Mol Evol. 2009 Dec;69(6):589-600 [PMID: 19904483]
  17. Science. 2014 Jan 17;343(6168):287-90 [PMID: 24436417]
  18. Curr Opin Immunol. 2003 Feb;15(1):12-9 [PMID: 12495727]
  19. Nat Genet. 2007 Dec;39(12):1461-8 [PMID: 17987029]
  20. Genetics. 2003 Aug;164(4):1471-80 [PMID: 12930753]
  21. Science. 2008 Mar 28;319(5871):1827-30 [PMID: 18339900]
  22. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73 [PMID: 20566863]
  23. Bioinformatics. 2005 Jun;21 Suppl 1:i152-8 [PMID: 15961452]
  24. Cytogenet Genome Res. 2005;110(1-4):462-7 [PMID: 16093699]
  25. Science. 2011 Feb 4;331(6017):555-61 [PMID: 21292972]
  26. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11206-11 [PMID: 19556545]
  27. Genome Res. 2011 Aug;21(8):1339-48 [PMID: 21719571]
  28. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1012-6 [PMID: 23277587]
  29. Insect Mol Biol. 2006 Oct;15(5):645-56 [PMID: 17069638]
  30. Mol Biol Evol. 2006 Feb;23(2):317-26 [PMID: 16221893]
  31. Cell. 2009 Jan 9;136(1):149-62 [PMID: 19135896]
  32. Annu Rev Entomol. 2005;50:529-51 [PMID: 15471530]
  33. Nature. 2011 Sep 28;478(7368):236-40 [PMID: 21964331]
  34. Nature. 2008 Apr 24;452(7190):949-55 [PMID: 18362917]
  35. Nature. 2004 Jul 22;430(6998):471-6 [PMID: 15269773]
  36. Insect Biochem Mol Biol. 2013 Sep;43(9):888-97 [PMID: 23459169]
  37. DNA Seq. 2005 Aug;16(4):304-7 [PMID: 16147891]
  38. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  39. Science. 2008 May 30;320(5880):1213-6 [PMID: 18511689]
  40. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  41. Mol Phylogenet Evol. 2007 Sep;44(3):953-67 [PMID: 17625919]
  42. Nature. 2006 Oct 26;443(7114):931-49 [PMID: 17073008]
  43. Science. 2010 Jan 15;327(5963):343-8 [PMID: 20075255]
  44. Nat Rev Genet. 2007 Apr;8(4):272-85 [PMID: 17363976]
  45. Nat Commun. 2014 May 20;5:3636 [PMID: 24845553]
  46. Nucleic Acids Res. 2014 Jan;42(Database issue):D749-55 [PMID: 24316576]
  47. J Biol Chem. 2001 Feb 9;276(6):4085-92 [PMID: 11053427]
  48. J Mol Evol. 2008 Dec;67(6):643-52 [PMID: 18956133]
  49. Curr Biol. 2007 Dec 4;17(23):R995-9 [PMID: 18054770]
  50. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D572-80 [PMID: 16381935]
  51. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  52. Science. 2010 Aug 27;329(5995):1068-71 [PMID: 20798317]
  53. Genome Res. 2013 Aug;23(8):1235-47 [PMID: 23636946]
  54. Mol Biol Evol. 2004 Dec;21(12):2256-64 [PMID: 15317879]
  55. Mol Biol Evol. 2006 Apr;23(4):798-806 [PMID: 16384818]
  56. J Insect Physiol. 2012 Mar;58(3):376-83 [PMID: 22245373]
  57. Science. 2012 Nov 9;338(6108):758-67 [PMID: 23145453]
  58. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12652-7 [PMID: 19506247]
  59. Trends Genet. 2012 Jan;28(1):14-21 [PMID: 21982512]
  60. Annu Rev Entomol. 2003;48:283-306 [PMID: 12208813]
  61. Bioinformatics. 2001 Sep;17(9):847-8 [PMID: 11590104]
  62. Mol Ecol. 2013 Apr;22(8):2173-87 [PMID: 23480581]
  63. Front Zool. 2008 Sep 29;5:15 [PMID: 18822181]
  64. Science. 2000 Mar 24;287(5461):2185-95 [PMID: 10731132]
  65. PLoS Biol. 2010 Feb 23;8(2):e1000313 [PMID: 20186266]
  66. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  67. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  68. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  69. PLoS One. 2013 Jul 17;8(7):e69184 [PMID: 23874908]
  70. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  71. Infect Genet Evol. 2007 Mar;7(2):285-92 [PMID: 17161659]
  72. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

Word Cloud

Created with Highcharts 10.0.0termitessocialtermitecomplexsocietiesantstwogenomescomplexitycastesreproductivesgenomicgenescommunicationsymbiosisevolvedeusocialitystudiedmuchlessrecentpublicationfirstprovidesuniquecomparativeopportunityparticularlysequencedrepresentoppositeendsspectrumZootermopsisnevadensissimplecoloniestotipotentworkerscandevelopdispersingnest-inheritingreplacementsoldierscontrastfungus-growingMacrotermesnatalensisbelongshigherlargemorphologicallydistinctlife-timesterilecomparekeycharacteristicsarchitecturefocusinginvolvedimmunedefensesmatingbiologylikelyimportantevolutiondiscussrelationknownoutlinehypothesistestingcomparisondifferentchemicalimmunityinsectsorganizationtransposableelements

Similar Articles

Cited By