Effects of protein type and composition on postprandial markers of skeletal muscle anabolism, adipose tissue lipolysis, and hypothalamic gene expression.

Christopher Brooks Mobley, Carlton D Fox, Brian S Ferguson, Corrie A Pascoe, James C Healy, Jeremy S McAdam, Christopher M Lockwood, Michael D Roberts
Author Information
  1. Christopher Brooks Mobley: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  2. Carlton D Fox: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  3. Brian S Ferguson: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  4. Corrie A Pascoe: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  5. James C Healy: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  6. Jeremy S McAdam: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.
  7. Christopher M Lockwood: 4Life Research USA, LLC, Sandy, UT USA.
  8. Michael D Roberts: School of Kinesiology, Molecular and Applied Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL 36849 USA.

Abstract

BACKGROUND: We examined the acute effects of different dietary protein sources (0.19 g, dissolved in 1 ml of water) on skeletal muscle, adipose tissue and hypothalamic satiety-related markers in fasted, male Wistar rats (~250 g).
METHODS: Oral gavage treatments included: a) whey protein concentrate (WPC, n = 15); b) 70:30 hydrolyzed whey-to-hydrolyzed egg albumin (70 W/30E, n = 15); c) 50 W/50E (n = 15); d) 30 W/70E (n = 15); and e) 1 ml of water with no protein as a fasting control (CTL, n = 14).
RESULTS: Skeletal muscle analyses revealed that compared to CTL: a) phosphorylated (p) markers of mTOR signaling [p-mTOR (Ser2481) and p-rps6 (Ser235/236)] were elevated 2-4-fold in all protein groups 90 min post-treatment (p < 0.05); b) WPC and 70 W/30E increased muscle protein synthesis (MPS) 104% and 74% 180 min post-treatment, respectively (p < 0.05); and c) 70 W/30E increased p-AMPKα (Thr172) 90 and 180-min post-treatment as well as PGC-1α mRNA 90 min post-treatment. Subcutaneous (SQ) and omental fat (OMAT) analyses revealed: a) 70 W/30 W increased SQ fat phosphorylated hormone-sensitive lipase [p-HSL (Ser563)] 3.1-fold versus CTL and a 1.9-4.4-fold change versus all other test proteins 180 min post-treatment (p < 0.05); and b) WPC, 70 W/30E and 50 W/50E increased OMAT p-HSL 3.8-6.5-fold 180 min post-treatment versus CTL (p < 0.05). 70 W/30E and 30 W/70E increased hypothalamic POMC mRNA 90 min post-treatment versus CTL rats suggesting a satiety-related response may have occurred in the former groups. However, there was a compensatory increase in orexigenic AGRP mRNA in the 70 W/30E group 90 min post-treatment versus CTL rats, and there was a compensatory increase in orexigenic NPY mRNA in the 30 W/70E group 90 min post-treatment versus CTL rats.
CONCLUSIONS: Higher amounts of whey versus egg protein stimulate the greatest post-treatment anabolic skeletal muscle response, though test proteins with higher amounts of WPH more favorably affected post-treatment markers related to adipose tissue lipolysis.

Keywords

References

  1. Neurosci Lett. 2013 Aug 26;548:159-64 [PMID: 23748211]
  2. Am J Physiol Cell Physiol. 2003 Nov;285(5):C1019-27 [PMID: 12826599]
  3. PLoS One. 2013 Jul 02;8(7):e68743 [PMID: 23844238]
  4. J Physiol. 2013 May 1;591(9):2319-31 [PMID: 23459753]
  5. Nutrients. 2009 Feb;1(2):263-75 [PMID: 22253983]
  6. J Physiol. 2009 Feb 15;587(Pt 4):897-904 [PMID: 19124543]
  7. FASEB J. 2008 Mar;22(3):659-61 [PMID: 17942826]
  8. J Int Soc Sports Nutr. 2013 Feb 12;10(1):8 [PMID: 23402493]
  9. J Am Coll Nutr. 2004 Oct;23(5):373-85 [PMID: 15466943]
  10. Med J Nutrition Metab. 2013;6:259-266 [PMID: 24319546]
  11. J Am Soc Nephrol. 2004 Mar;15(3):575-84 [PMID: 14978159]
  12. J Nutr. 2009 Jun;139(6):1103-9 [PMID: 19403715]
  13. Exerc Sport Sci Rev. 2013 Apr;41(2):107-15 [PMID: 23089927]
  14. Nutr Metab (Lond). 2010 Jun 17;7:51 [PMID: 20565767]
  15. J Nutr. 2002 Aug;132(8):2174-82 [PMID: 12163658]
  16. Eur J Appl Physiol. 2014 Apr;114(4):735-42 [PMID: 24384983]
  17. Int J Obes (Lond). 2008 Oct;32(10):1545-51 [PMID: 18679412]
  18. Appl Physiol Nutr Metab. 2014 Feb;39(2):158-67 [PMID: 24476471]
  19. Br J Nutr. 2013 Dec 14;110(11):2114-26 [PMID: 23731955]
  20. J Int Soc Sports Nutr. 2014 Aug 13;11:38 [PMID: 25132809]
  21. J Biol Chem. 2003 Feb 7;278(6):4015-20 [PMID: 12446708]
  22. J Am Coll Nutr. 2007 Dec;26(6):704S-12S [PMID: 18187437]
  23. Am J Clin Nutr. 2014 Jan;99(1):86-95 [PMID: 24257722]
  24. Nature. 2012 Jan 11;481(7382):463-8 [PMID: 22237023]
  25. Am J Clin Nutr. 2011 Sep;94(3):795-803 [PMID: 21795443]
  26. Diabetes. 1998 Feb;47(2):294-7 [PMID: 9519731]
  27. Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E231-42 [PMID: 21045172]
  28. Nutr Metab (Lond). 2012 Jul 20;9(1):67 [PMID: 22818257]
  29. Physiol Genomics. 2010 Jun;42(1):134-48 [PMID: 20388840]
  30. J Am Coll Nutr. 2014;33(2):163-75 [PMID: 24724774]
  31. J Dairy Sci. 2010 Feb;93(2):437-55 [PMID: 20105516]
  32. J Proteome Res. 2014 May 2;13(5):2560-70 [PMID: 24702026]
  33. Nature. 2009 Apr 23;458(7241):1056-60 [PMID: 19262508]
  34. Diabetes. 2008 Feb;57(2):357-66 [PMID: 17977950]
  35. Nutr Metab (Lond). 2008 Mar 27;5:8 [PMID: 18371214]
  36. J Am Coll Nutr. 2005 Dec;24(6):510-5 [PMID: 16373948]
  37. J Am Coll Nutr. 2009 Aug;28(4):343-54 [PMID: 20368372]
  38. J Nutr. 2013 Jul;143(7):1109-14 [PMID: 23658425]
  39. Br J Nutr. 2007 Nov;98(5):900-7 [PMID: 17692148]
  40. J Int Soc Sports Nutr. 2007 Sep 26;4:8 [PMID: 17908291]
  41. J Nutr. 2011 Apr 1;141(4):582-7 [PMID: 21310864]
  42. Physiol Behav. 2012 Feb 1;105(3):661-8 [PMID: 22001493]
  43. Nutrients. 2012 Oct 19;4(10):1504-17 [PMID: 23201768]
  44. Biochem J. 1997 Feb 15;322 ( Pt 1):145-50 [PMID: 9078254]
  45. Appl Physiol Nutr Metab. 2012 Feb;37(1):21-30 [PMID: 22148961]
  46. Exerc Sport Sci Rev. 2011 Oct;39(4):206-11 [PMID: 21799423]
  47. Lipids Health Dis. 2012 Jul 10;11:67 [PMID: 22676328]
  48. J Nutr Sci Vitaminol (Tokyo). 2009 Feb;55(1):81-6 [PMID: 19352067]
  49. Int J Obes (Lond). 2008 Mar;32(3):510-8 [PMID: 18345020]
  50. J Nutr Health Aging. 2009 Feb;13(2):108-14 [PMID: 19214338]
  51. J Int Soc Sports Nutr. 2012 Jun 06;9(1):24 [PMID: 22672725]
  52. Biochim Biophys Acta. 2008 Oct;1780(10 ):1115-20 [PMID: 18616983]
  53. J Nutrigenet Nutrigenomics. 2008;1(5):240-51 [PMID: 19776631]
  54. J Biol Chem. 1962 Jun;237:1787-92 [PMID: 14470343]

Word Cloud

Created with Highcharts 10.0.0proteinpost-treatmentversus70 W/30ECTLmuscle90 minincreasedmarkersratsn = 15p < 005mRNAskeletaladiposetissuehypothalamicWPCb30 W/70E180 min1 mlwatersatiety-relatedwheyeggc50 W/50Eanalysesphosphorylated]groupssynthesisSQfatOMAT3testproteinsresponsecompensatoryincreaseorexigenicgroupamountslipolysisBACKGROUND:examinedacuteeffectsdifferentdietarysources019 gdissolvedfastedmaleWistar~250 gMETHODS:Oralgavagetreatmentsincluded:concentrate70:30hydrolyzedwhey-to-hydrolyzedalbumindefastingcontroln = 14RESULTS:SkeletalrevealedcomparedCTL:pmTORsignaling[p-mTORSer2481p-rps6Ser235/236elevated2-4-foldMPS104%74%respectivelyp-AMPKαThr17290180-minwellPGC-1αSubcutaneousomentalrevealed:70 W/30 Whormone-sensitivelipase[p-HSLSer5631-fold19-44-foldchangep-HSL8-65-foldPOMCsuggestingmayoccurredformerHoweverAGRPNPYCONCLUSIONS:HigherstimulategreatestanabolicthoughhigherWPHfavorablyaffectedrelatedEffectstypecompositionpostprandialanabolismgeneexpressionEggHydrolyzedLipolysisMuscleWhey

Similar Articles

Cited By