Habituation of LG-mediated tailflip in the crayfish.

Toshiki Nagayama, Makoto Araki
Author Information
  1. Toshiki Nagayama: Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan, nagayama@sci.kj.yamagata-u.ac.jp.

Abstract

Crayfish escape from threatening stimuli by tailflipping. If a stimulus is applied to the rear, crayfish escape up and forwards in a summersault maneuver that is mediated by the activation of lateral giant (LG) interneurons. The occurrence probability of LG-mediated tailflip, however, diminishes and habituates if a stimulus is repeatedly applied. Since crayfish have a relatively simple CNS with many identifiable neurons, crayfish represent a good animal to analyze the cellular basis of habituation. A reduction in the amplitude of the EPSP in the LGs, caused by direct chemical synaptic connection from sensory afferents by repetitive stimulations, is essential to bring about an inactivation of the LGs. The spike response of the LGs recovers within several minutes of habituation, but the LGs subsequently fail to spike when an additional stimulus is applied after specific periods following habituation. These results indicate that a decline in synaptic efficacy from the mechanosensory afferents recovers readily after a short delay, but then the excitability of the LGs themselves decreases. Furthermore, the processes underlying habituation are modulated depending on a social status. When two crayfish encounter each other, a winner-loser relationship is established. With a short interstimulus interval of 5 s, the rate of habituation of the LG in both socially dominant and subordinate crayfish becomes lower than in socially isolated animals. Serotonin and octopamine affect this social status-dependent modulation of habituation by means of activation of downstream second messenger system of cAMP and IP3 cascades, respectively.

References

  1. J Neurophysiol. 1994 Aug;72(2):890-8 [PMID: 7983544]
  2. J Exp Biol. 2012 Apr 1;215(Pt 7):1210-7 [PMID: 22399667]
  3. J Neurophysiol. 2007 Dec;98(6):3494-504 [PMID: 17898136]
  4. Learn Mem. 1998 May-Jun;5(1-2):146-56 [PMID: 10454379]
  5. J Neurosci. 1997 Jan 15;17(2):697-708 [PMID: 8987791]
  6. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 May;191(5):481-9 [PMID: 15750816]
  7. J Comp Neurol. 1997 Dec 8;389(1):139-48 [PMID: 9390765]
  8. J Neurophysiol. 2008 Aug;100(2):1113-26 [PMID: 18562553]
  9. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Oct;189(10):731-9 [PMID: 13680133]
  10. J Exp Biol. 2008 Jan;211(Pt 1):92-105 [PMID: 18083737]
  11. Pharmacol Rev. 1994 Jun;46(2):157-203 [PMID: 7938165]
  12. Prog Neurobiol. 1999 Dec;59(5):533-61 [PMID: 10515667]
  13. J Comp Neurol. 1993 Nov 22;337(4):584-99 [PMID: 8288772]
  14. Science. 1971 Aug 13;173(3997):645-50 [PMID: 4327600]
  15. Histol Histopathol. 1994 Oct;9(4):791-805 [PMID: 7894151]
  16. J Neurophysiol. 1972 Sep;35(5):621-37 [PMID: 5054507]
  17. J Neurophysiol. 1992 Dec;68(6):2174-84 [PMID: 1337103]
  18. J Exp Biol. 2009 Mar;212(Pt 6):749-51 [PMID: 19251988]
  19. J Neurophysiol. 1997 May;77(5):2826-30 [PMID: 9163396]
  20. J Neurosci. 1983 Nov;3(11):2263-9 [PMID: 6415242]
  21. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Nov;197(11):1073-81 [PMID: 21789652]
  22. J Neurophysiol. 2006 Apr;95(4):2721-4 [PMID: 16381808]
  23. J Comp Neurol. 1999 Aug 9;410(4):677-88 [PMID: 10398056]
  24. J Exp Biol. 1972 Feb;56(1):1-18 [PMID: 21046844]
  25. Science. 1973 Nov 9;182(4112):590-2 [PMID: 4795747]
  26. Integr Comp Biol. 2002 Aug;42(4):705-15 [PMID: 21708767]
  27. J Physiol. 1977 Oct;271(2):351-68 [PMID: 200734]
  28. J Comp Neurol. 2004 Jun 14;474(1):123-35 [PMID: 15156582]
  29. PLoS One. 2013 Sep 18;8(9):e74489 [PMID: 24058575]
  30. Science. 1992 Mar 27;255(5052):1710-2 [PMID: 1553559]
  31. J Exp Biol. 1975 Oct;63(2):433-50 [PMID: 1202134]
  32. J Comp Neurol. 2005 Apr 11;484(3):261-82 [PMID: 15739232]
  33. Eur J Neurosci. 1992;4(6):521-532 [PMID: 12106338]
  34. J Neurophysiol. 1947 Jan;10(1):23-38 [PMID: 20279137]
  35. J Exp Biol. 2012 Aug 15;215(Pt 16):2841-8 [PMID: 22837457]
  36. Brain Res. 1984 Nov 19;322(1):139-43 [PMID: 6097333]
  37. Exp Biol. 1986;46(2):75-82 [PMID: 3817117]
  38. J Exp Biol. 1969 Feb;50(1):29-46 [PMID: 4304852]
  39. J Comp Neurol. 2004 Jun 7;473(4):526-37 [PMID: 15116388]
  40. J Neurosci. 1993 Oct;13(10):4379-93 [PMID: 8410194]
  41. Mol Pharmacol. 1997 Feb;51(2):293-300 [PMID: 9203635]
  42. J Neurosci. 1993 Oct;13(10):4394-402 [PMID: 8410195]
  43. J Comp Neurol. 1993 Jun 8;332(2):155-74 [PMID: 8331210]
  44. J Neurophysiol. 1972 Sep;35(5):599-620 [PMID: 5054506]
  45. J Neurophysiol. 1992 Mar;67(3):588-98 [PMID: 1578245]
  46. J Neurosci. 2001 Apr 15;21(8):2759-67 [PMID: 11306628]
  47. Science. 2001 Nov 2;294(5544):1030-8 [PMID: 11691980]
  48. Psychol Rev. 1966 Jan;73(1):16-43 [PMID: 5324565]
  49. Brain Behav Evol. 2002;60(6):360-9 [PMID: 12563168]
  50. Anim Behav. 1969 Aug;17(3):416-24 [PMID: 5370959]
  51. J Neurosci. 2009 Oct 14;29(41):12748-56 [PMID: 19828785]
  52. J Exp Biol. 2011 Aug 15;214(Pt 16):2718-23 [PMID: 21795568]
  53. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3362-6 [PMID: 7724567]
  54. PLoS One. 2011;6(12):e29132 [PMID: 22216183]
  55. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5939-42 [PMID: 9159179]
  56. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Aug;198(8):607-15 [PMID: 22622466]
  57. J Exp Biol. 2013 Feb 15;216(Pt 4):681-6 [PMID: 23125344]
  58. J Neurophysiol. 2005 Oct;94(4):2644-52 [PMID: 16160094]
  59. J Neurosci. 1997 Jan 15;17(2):709-16 [PMID: 8987792]
  60. J Exp Biol. 1975 Jun;62(3):771-82 [PMID: 1206352]
  61. J Exp Zool A Comp Exp Biol. 2005 Jan 1;303(1):66-75 [PMID: 15612007]
  62. Trends Neurosci. 1999 Apr;22(4):153-61 [PMID: 10203852]
  63. J Neurophysiol. 1997 Mar;77(3):1213-23 [PMID: 9084591]

MeSH Term

Animals
Astacoidea
Escape Reaction
Ganglia, Invertebrate
Habituation, Psychophysiologic
Interneurons

Word Cloud

Created with Highcharts 10.0.0crayfishhabituationLGsstimulusappliedescapeactivationLGLG-mediatedtailflipsynapticafferentsspikerecoversshortsocialsociallyCrayfishthreateningstimulitailflippingrearforwardssummersaultmaneuvermediatedlateralgiantinterneuronsoccurrenceprobabilityhoweverdiminisheshabituatesrepeatedlySincerelativelysimpleCNSmanyidentifiableneuronsrepresentgoodanimalanalyzecellularbasisreductionamplitudeEPSPcauseddirectchemicalconnectionsensoryrepetitivestimulationsessentialbringinactivationresponsewithinseveralminutessubsequentlyfailadditionalspecificperiodsfollowingresultsindicatedeclineefficacymechanosensoryreadilydelayexcitabilitydecreasesFurthermoreprocessesunderlyingmodulateddependingstatustwoencounterwinner-loserrelationshipestablishedinterstimulusinterval5 sratedominantsubordinatebecomeslowerisolatedanimalsSerotoninoctopamineaffectstatus-dependentmodulationmeansdownstreamsecondmessengersystemcAMPIP3cascadesrespectivelyHabituation

Similar Articles

Cited By