A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis.

N L Turner, S Dias, A E Ades, N J Welton
Author Information
  1. N L Turner: School of Social and Community Medicine, University of Bristol, Bristol, U.K.

Abstract

Missing outcome data are a common threat to the validity of the results from randomised controlled trials (RCTs), which, if not analysed appropriately, can lead to misleading treatment effect estimates. Studies with missing outcome data also threaten the validity of any meta-analysis that includes them. A conceptually simple Bayesian framework is proposed, to account for uncertainty due to missing binary outcome data in meta-analysis. A pattern-mixture model is fitted, which allows the incorporation of prior information on a parameter describing the missingness mechanism. We describe several alternative parameterisations, with the simplest being a prior on the probability of an event in the missing individuals. We describe a series of structural assumptions that can be made concerning the missingness parameters. We use some artificial data scenarios to demonstrate the ability of the model to produce a bias-adjusted estimate of treatment effect that accounts for uncertainty. A meta-analysis of haloperidol versus placebo for schizophrenia is used to illustrate the model. We end with a discussion of elicitation of priors, issues with poor reporting and potential extensions of the framework. Our framework allows one to make the best use of evidence produced from RCTs with missing outcome data in a meta-analysis, accounts for any uncertainty induced by missing data and fits easily into a wider evidence synthesis framework for medical decision making.

Keywords

References

  1. Clin Trials. 2007;4(2):125-39 [PMID: 17456512]
  2. Stat Med. 2015 May 30;34(12):2062-80 [PMID: 25809313]
  3. J Biopharm Stat. 2013;23(6):1352-71 [PMID: 24138436]
  4. J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):21-47 [PMID: 19381328]
  5. Med Decis Making. 2013 Jul;33(5):607-17 [PMID: 23104435]
  6. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD003082 [PMID: 17054159]
  7. BMJ. 2005 Oct 15;331(7521):897-900 [PMID: 16223826]
  8. Med Decis Making. 2013 Jul;33(5):597-606 [PMID: 23804506]
  9. Clin Trials. 2008;5(3):225-39 [PMID: 18559412]
  10. Med Decis Making. 2013 Jul;33(5):671-8 [PMID: 23804510]
  11. Stat Med. 1995 Dec 30;14(24):2685-99 [PMID: 8619108]
  12. BMC Med Res Methodol. 2014 Nov 19;14:118 [PMID: 25407057]
  13. Pharm Stat. 2013 Jan-Feb;12(1):1-6 [PMID: 23193075]
  14. Control Clin Trials. 2003 Aug;24(4):411-21 [PMID: 12865035]
  15. Int J Epidemiol. 2012 Jun;41(3):818-27 [PMID: 22461129]
  16. BMJ. 1996 Jan 13;312(7023):71-2 [PMID: 8555924]
  17. Ann Intern Med. 2012 Sep 18;157(6):429-38 [PMID: 22945832]
  18. Stat Med. 2013 Jan 15;32(1):51-66 [PMID: 22806991]
  19. Stat Med. 2008 Feb 28;27(5):711-27 [PMID: 17703496]
  20. Stat Med. 2015 Feb 28;34(5):721-41 [PMID: 25393541]
  21. Stat Methods Med Res. 2013 Apr;22(2):133-58 [PMID: 22275379]
  22. Pharm Stat. 2012 Nov-Dec;11(6):456-61 [PMID: 22962024]
  23. Stat Med. 2008 Feb 28;27(5):728-45 [PMID: 17703502]
  24. Clin Trials. 2013;10(3):378-88 [PMID: 23321265]

Grants

  1. G0802413/Medical Research Council
  2. MC_U145079307/Medical Research Council
  3. MR/K025643/1/Medical Research Council
  4. MR/M005232/1/Medical Research Council

MeSH Term

Antipsychotic Agents
Bayes Theorem
Bias
Data Interpretation, Statistical
Dose-Response Relationship, Drug
Haloperidol
Humans
Meta-Analysis as Topic
Models, Statistical
Outcome Assessment, Health Care
Randomized Controlled Trials as Topic
Reproducibility of Results
Review Literature as Topic
Schizophrenia
Uncertainty

Chemicals

Antipsychotic Agents
Haloperidol

Word Cloud

Created with Highcharts 10.0.0datamissingmeta-analysisoutcomeframeworkuncertaintymodelBayesianvalidityRCTscantreatmenteffectaccountduebinarypattern-mixtureallowspriormissingnessdescribeuseaccountsevidencedecisionmakingMissingcommonthreatresultsrandomisedcontrolledtrialsanalysedappropriatelyleadmisleadingestimatesStudiesalsothreatenincludesconceptuallysimpleproposedfittedincorporationinformationparameterdescribingmechanismseveralalternativeparameterisationssimplestprobabilityeventindividualsseriesstructuralassumptionsmadeconcerningparametersartificialscenariosdemonstrateabilityproducebias-adjustedestimatehaloperidolversusplaceboschizophreniausedillustrateenddiscussionelicitationpriorsissuespoorreportingpotentialextensionsonemakebestproducedinducedfitseasilywidersynthesismedicalpairwisebias

Similar Articles

Cited By