Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets.

Risheng Ye, Miao Wang, Qiong A Wang, Philipp E Scherer
Author Information
  1. Risheng Ye: Touchstone Diabetes Center (R.Y., Q.A.W., P.E.S.), Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Therapeutic Oncology Research (M.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Cell Biology (P.E.S.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390.

Abstract

Pathways that stimulate β-cell regeneration remain of great clinical interest, yet effective therapeutic avenues that promote survival or reconstitution of β-cell mass remain elusive. Using a mouse model with inducible β-cell apoptosis followed by adiponectin-mediated regeneration, we aimed to identify key molecules boosting β-cell viability. In the regenerating pancreatic islets, we examined changes within the transcriptome and observed an extensive up-regulation of genes encoding proteins involved in lipid transport and metabolism. The most prominent targets were further confirmed by quantitative PCR and immunofluorescence. Among the upstream regulators predicted by pathway analysis of the transcriptome, we detected enhanced levels of 2 key transcription factors, Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Our data suggest that improving pancreatic islet lipid metabolism as an important antilipotoxic phenomenon to boost β-cell regeneration. This is primarily mediated by the adipokine adiponectin that exerts its action on both the beta-cell directly as well as on the adipocyte. adiponectin induces lipid metabolism gene expression in regenerating islets through Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. adiponectin also modulates leptin levels via preserving adipose tissue mass in the insulinopenic state.

References

  1. Nutr Metab Cardiovasc Dis. 2008 Jan;18(1):74-83 [PMID: 18096375]
  2. J Endocrinol. 2013 Jan;216(1):T37-45 [PMID: 22991412]
  3. Biochim Biophys Acta. 2010 Mar;1801(3):289-98 [PMID: 19715772]
  4. J Mol Endocrinol. 2012 Aug;49(1):R9-17 [PMID: 22448029]
  5. Annu Rev Pharmacol Toxicol. 2005;45:1-25 [PMID: 15832443]
  6. J Biol Chem. 2009 May 22;284(21):14050-7 [PMID: 19336396]
  7. Diabetes. 2005 Dec;54(12):3358-70 [PMID: 16306350]
  8. Biochimie. 2005 Jan;87(1):57-64 [PMID: 15733738]
  9. Peptides. 2010 May;31(5):944-9 [PMID: 20156502]
  10. Endocrinology. 2004 Jan;145(1):367-83 [PMID: 14576179]
  11. J Intern Med. 2014 Jan;275(1):39-48 [PMID: 24482829]
  12. Nat Rev Genet. 2009 Feb;10(2):109-21 [PMID: 19139765]
  13. Nat Med. 2011 Jan;17(1):55-63 [PMID: 21186369]
  14. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13624-9 [PMID: 15347805]
  15. Nature. 1996 Dec 5;384(6608):458-60 [PMID: 8945471]
  16. Mol Metab. 2013 Apr 19;2(3):133-41 [PMID: 24049728]
  17. Diabetes. 2007 Sep;56(9):2295-301 [PMID: 17563069]
  18. Diabetes. 2006 Sep;55(9):2470-8 [PMID: 16936195]
  19. J Biol Chem. 2006 Feb 3;281(5):2654-60 [PMID: 16326714]
  20. PPAR Res. 2010;2010:null [PMID: 20936127]
  21. Mol Cell Biol. 2010 Feb;30(3):565-77 [PMID: 19933841]
  22. J Biol Chem. 2009 Apr 24;284(17):11152-9 [PMID: 19258313]
  23. Diabetes Obes Metab. 2012 Nov;14(11):983-9 [PMID: 22594400]
  24. Nat Med. 2007 Mar;13(3):332-9 [PMID: 17268472]
  25. Trends Endocrinol Metab. 2010 Jun;21(6):345-52 [PMID: 20223680]
  26. J Thromb Haemost. 2011 Jul;9 Suppl 1:26-34 [PMID: 21781239]
  27. Nature. 2013 Nov 28;503(7477):493-9 [PMID: 24172895]
  28. Mol Biol Cell. 2013 Oct;24(19):3011-5 [PMID: 24072813]
  29. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14568-73 [PMID: 22904186]
  30. Genes Dev. 2007 Apr 1;21(7):756-69 [PMID: 17403778]
  31. Elife. 2014;3. doi: 10.7554/eLife.03851 [PMID: 25339419]
  32. Physiol Rev. 2005 Oct;85(4):1255-70 [PMID: 16183912]
  33. Endocr Rev. 2007 Feb;28(1):84-116 [PMID: 17261637]
  34. Cell Metab. 2014 Oct 7;20(4):593-602 [PMID: 25264246]
  35. Exp Cell Res. 1993 Sep;208(1):241-7 [PMID: 8102976]
  36. Diabetes. 2008 Aug;57(8):2137-48 [PMID: 18469203]

Grants

  1. K99 DK094973/NIDDK NIH HHS
  2. P01 DK088761/NIDDK NIH HHS
  3. R00 DK094973/NIDDK NIH HHS
  4. R01-DK55758/NIDDK NIH HHS
  5. P01-DK088761/NIDDK NIH HHS
  6. R01-DK099110/NIDDK NIH HHS
  7. R01 DK099110/NIDDK NIH HHS
  8. R01 DK055758/NIDDK NIH HHS

MeSH Term

Adiponectin
Animals
Apoptosis
Cell Proliferation
Immunohistochemistry
Insulin-Secreting Cells
Islets of Langerhans
Lipid Metabolism
Male
Mice
Mice, Knockout
Real-Time Polymerase Chain Reaction
Transcriptome

Chemicals

Adiponectin

Word Cloud

Created with Highcharts 10.0.0β-cellregenerationregeneratingpancreaticisletslipidmetabolismremainmasskeytranscriptomelevelsHepatocyteNuclearFactorPeroxisomeProliferator-ActivatedReceptorαantilipotoxicAdiponectinPathwaysstimulategreatclinicalinterestyeteffectivetherapeuticavenuespromotesurvivalreconstitutionelusiveUsingmousemodelinducibleapoptosisfollowedadiponectin-mediatedaimedidentifymoleculesboostingviabilityexaminedchangeswithinobservedextensiveup-regulationgenesencodingproteinsinvolvedtransportprominenttargetsconfirmedquantitativePCRimmunofluorescenceAmongupstreamregulatorspredictedpathwayanalysisdetectedenhanced2transcriptionfactorsdatasuggestimprovingisletimportantphenomenonboostprimarilymediatedadipokineadiponectinexertsactionbeta-celldirectlywelladipocyteinducesgeneexpressionalsomodulatesleptinviapreservingadiposetissueinsulinopenicstateAdiponectin-mediatedeffects

Similar Articles

Cited By