Idealized computational models for auditory receptive fields.

Tony Lindeberg, Anders Friberg
Author Information
  1. Tony Lindeberg: Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.
  2. Anders Friberg: Department of Speech, Music and Hearing, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.

Abstract

We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.

References

  1. Hear Res. 2011 Dec;282(1-2):204-15 [PMID: 21851853]
  2. Biol Cybern. 2013 Dec;107(6):589-635 [PMID: 24197240]
  3. J Neurophysiol. 2003 Jul;90(1):456-76 [PMID: 12660353]
  4. J Physiol. 1962 Jan;160:106-54 [PMID: 14449617]
  5. Spat Vis. 1987;2(4):273-93 [PMID: 3154952]
  6. J Opt Soc Am A. 1990 Aug;7(8):1362-73 [PMID: 2398445]
  7. J Acoust Soc Am. 1995 Oct;98(4):1890-4 [PMID: 7593913]
  8. J Neurosci. 2004 Feb 4;24(5):1089-100 [PMID: 14762127]
  9. J Acoust Soc Am. 1990 Jun;87(6):2592-605 [PMID: 2373794]
  10. J Rehabil Res Dev. 1993;30(1):49-72 [PMID: 8263829]
  11. J Neurosci. 2007 May 2;27(18):4882-93 [PMID: 17475796]
  12. Hear Res. 2011 Jan;271(1-2):123-32 [PMID: 20123121]
  13. PLoS One. 2015 Mar 30;10(3):e0119032 [PMID: 25822973]
  14. J Acoust Soc Am. 1994 Apr;95(4):2145-59 [PMID: 8201111]
  15. J Acoust Soc Am. 1990 Oct;88(4):1712-24 [PMID: 2262628]
  16. J Neurosci. 2000 Mar 15;20(6):2315-31 [PMID: 10704507]
  17. J Neurosci. 2006 Oct 18;26(42):10826-46 [PMID: 17050721]
  18. J Acoust Soc Am. 1996 Dec;100(6):3491-502 [PMID: 8969472]
  19. J Acoust Soc Am. 2003 Sep;114(3):1529-42 [PMID: 14514206]
  20. J Neurosci. 2002 May 15;22(10):4114-31 [PMID: 12019330]
  21. J Neurosci. 2008 Aug 6;28(32):8096-106 [PMID: 18685034]
  22. J Neurophysiol. 2012 May;107(10):2594-603 [PMID: 22323634]
  23. Biol Cybern. 1981;42(2):133-43 [PMID: 7326288]
  24. J Acoust Soc Am. 2001 Dec;110(6):3107-18 [PMID: 11785812]
  25. IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98 [PMID: 21869365]
  26. Science. 1982 Jun 18;216(4552):1339-40 [PMID: 7079770]
  27. J Neurophysiol. 1987 Dec;58(6):1187-211 [PMID: 3437330]
  28. J Acoust Soc Am. 1999 Nov;106(5):2719-32 [PMID: 10573888]
  29. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2144-9 [PMID: 22308415]
  30. J Neurosci. 2007 Sep 26;27(39):10372-82 [PMID: 17898209]
  31. PLoS One. 2012;7(11):e50539 [PMID: 23209771]
  32. Biol Cybern. 1988;58(3):163-71 [PMID: 3358951]
  33. Spat Vis. 2001;14(3-4):261-319 [PMID: 11817740]
  34. Biol Cybern. 1984;50(5):363-70 [PMID: 6477978]
  35. J Neurophysiol. 2005 Jan;93(1):454-66 [PMID: 15342716]
  36. PLoS One. 2013 Jul 19;8(7):e66990 [PMID: 23894283]
  37. PLoS One. 2012;7(2):e31537 [PMID: 22384036]
  38. J Neurophysiol. 2002 Jan;87(1):516-27 [PMID: 11784767]
  39. J Acoust Soc Am. 1980 Oct;68(4):1115-22 [PMID: 7419827]
  40. J Acoust Soc Am. 2012 May;131(5):4134-51 [PMID: 22559385]
  41. J Acoust Soc Am. 1973 Sep;54(3):610-9 [PMID: 4754385]
  42. Curr Opin Neurobiol. 1992 Aug;2(4):449-56 [PMID: 1525542]
  43. Nat Neurosci. 2003 Nov;6(11):1216-23 [PMID: 14583754]
  44. J Neurophysiol. 2010 Feb;103(2):887-903 [PMID: 20018831]
  45. J Physiol. 1959 Oct;148:574-91 [PMID: 14403679]
  46. J Opt Soc Am. 1980 Nov;70(11):1297-300 [PMID: 7463179]
  47. J Neurophysiol. 1987 Dec;58(6):1233-58 [PMID: 3437332]
  48. Biol Cybern. 1987;55(6):367-75 [PMID: 3567240]
  49. Trends Neurosci. 1995 Oct;18(10):451-8 [PMID: 8545912]

MeSH Term

Acoustic Stimulation
Algorithms
Animals
Auditory Cortex
Auditory Pathways
Auditory Perception
Humans
Inferior Colliculi
Models, Neurological

Word Cloud

Created with Highcharts 10.0.0receptivefieldsauditoryspectro-temporaltemporaldomainframeworktime-causaleithertimemodelscanderivedfieldsoundtransformationsdifferentspectraltime-frequencyshownallowsGammatonefiltersfamilyleadsfamiliesGaussiannon-causalfilterpresenttheoryidealizedprincipledaxiomaticmannersetstructuralpropertiesenableinvarianceresponsesnaturaliiensureinternalconsistencyscalesdefiningtransformationpurelysignalnewwayderivingGaborwellnovelgeneralizedadditionaldegreesfreedomobtaintrade-offsselectivitydelaywindowfunctionsapplieddefinitionsecond-layerspectrogramtwocanonicaltermsderivativeskernelscascadefirst-orderintegratorslogspectralseparableadaptedlocalglissandorepresentvariationslogarithmicfrequenciesWithinuniquenessassumptionsdemonstratedpresentedcomputationbasicfeaturesaudioprocessingpredictionsgoodqualitativesimilaritybiologicalmeasuredinferiorcolliculusICCprimarycortexA1mammalsIdealizedcomputational

Similar Articles

Cited By