Network Modularity is essential for evolution of cooperation under uncertainty.

David A Gianetto, Babak Heydari
Author Information
  1. David A Gianetto: 1] School of Systems and Enterprises, Stevens Institute of Technology, Hoboken NJ, USA [2] Raytheon Space and Airborne Systems, El Segundo CA, USA.
  2. Babak Heydari: School of Systems and Enterprises, Stevens Institute of Technology, Hoboken NJ, USA.

Abstract

Cooperative behavior, which pervades nature, can be significantly enhanced when agents interact in a structured rather than random way; however, the key structural factors that affect cooperation are not well understood. Moreover, the role structure plays with cooperation has largely been studied through observing overall cooperation rather than the underlying components that together shape cooperative behavior. In this paper we address these two problems by first applying evolutionary games to a wide range of networks, where agents play the Prisoner's Dilemma with a three-component stochastic strategy, and then analyzing agent-based simulation results using principal component analysis. With these methods we study the evolution of trust, reciprocity and forgiveness as a function of several structural parameters. This work demonstrates that community structure, represented by network modularity, among all the tested structural parameters, has the most significant impact on the emergence of cooperative behavior, with forgiveness showing the largest sensitivity to community structure. We also show that increased community structure reduces the dispersion of trust and forgiveness, thereby reducing the network-level uncertainties for these two components; graph transitivity and degree also significantly influence the evolutionary dynamics of the population and the diversity of strategies at equilibrium.

References

  1. Nature. 2012 Nov 1;491(7422):48-9 [PMID: 23075847]
  2. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  3. Sci Rep. 2014;4:5496 [PMID: 24975112]
  4. PLoS Comput Biol. 2014 Apr;10(4):e1003567 [PMID: 24762474]
  5. Phys Rev Lett. 2007 Mar 9;98(10):108103 [PMID: 17358570]
  6. Proc Biol Sci. 2006 Jan 7;273(1582):51-5 [PMID: 16519234]
  7. J Theor Biol. 2012 Apr 21;299:88-96 [PMID: 21930134]
  8. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  9. Phys Rev Lett. 2006 Dec 22;97(25):258103 [PMID: 17280398]
  10. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  11. Phys Life Rev. 2009 Dec;6(4):208-49 [PMID: 20416850]
  12. Proc Biol Sci. 2007 Aug 7;274(1620):1815-21 [PMID: 17504741]
  13. Science. 1981 Mar 27;211(4489):1390-6 [PMID: 7466396]
  14. J Theor Biol. 2012 Apr 21;299:126-38 [PMID: 21983567]
  15. Phys Rev Lett. 2005 Aug 26;95(9):098104 [PMID: 16197256]
  16. Biosystems. 2010 Feb;99(2):109-25 [PMID: 19837129]
  17. Science. 2006 Aug 11;313(5788):824-7 [PMID: 16902134]
  18. Evolution. 2012 Mar;66(3):623-36 [PMID: 22380428]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046106 [PMID: 19905389]
  20. J R Soc Interface. 2013 Mar 6;10(80):20120997 [PMID: 23303223]
  21. J Theor Biol. 2012 Apr 21;299:9-20 [PMID: 21723299]
  22. Philos Trans R Soc Lond B Biol Sci. 2014 May 19;369(1642):20130360 [PMID: 24686932]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 [PMID: 14995526]
  24. J Theor Biol. 2013 May 7;324:103-8 [PMID: 23261393]
  25. Nature. 2012 Nov 1;491(7422):72-7 [PMID: 23075853]
  26. Chaos. 2011 Mar;21(1):016113 [PMID: 21456855]
  27. J Evol Biol. 2006 May;19(3):726-33 [PMID: 16674569]
  28. J Theor Biol. 2012 Apr 21;299:1-8 [PMID: 22281519]
  29. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]

MeSH Term

Algorithms
Game Theory
Humans
Models, Theoretical

Word Cloud

Created with Highcharts 10.0.0cooperationstructurebehaviorstructuralforgivenesscommunitysignificantlyagentsrathercomponentscooperativetwoevolutionaryevolutiontrustparametersalsoCooperativepervadesnaturecanenhancedinteractstructuredrandomwayhoweverkeyfactorsaffectwellunderstoodMoreoverroleplayslargelystudiedobservingoverallunderlyingtogethershapepaperaddressproblemsfirstapplyinggameswiderangenetworksplayPrisoner'sDilemmathree-componentstochasticstrategyanalyzingagent-basedsimulationresultsusingprincipalcomponentanalysismethodsstudyreciprocityfunctionseveralworkdemonstratesrepresentednetworkmodularityamongtestedsignificantimpactemergenceshowinglargestsensitivityshowincreasedreducesdispersiontherebyreducingnetwork-leveluncertaintiesgraphtransitivitydegreeinfluencedynamicspopulationdiversitystrategiesequilibriumNetworkModularityessentialuncertainty

Similar Articles

Cited By