Htr2a Expression Responds Rapidly to Environmental Stimuli in an Egr3-Dependent Manner.

Amanda M Maple, Xiuli Zhao, Diana I Elizalde, Andrew K McBride, Amelia L Gallitano
Author Information
  1. Amanda M Maple: †Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth St., Phoenix, Arizona 85004, United States.
  2. Xiuli Zhao: †Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth St., Phoenix, Arizona 85004, United States.
  3. Diana I Elizalde: †Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth St., Phoenix, Arizona 85004, United States.
  4. Andrew K McBride: †Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth St., Phoenix, Arizona 85004, United States.
  5. Amelia L Gallitano: †Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth St., Phoenix, Arizona 85004, United States.

Abstract

Pharmacologic and genetic findings have implicated the serotonin 2A receptor (5-HT2AR) in the etiology of schizophrenia. Recent studies have shown reduced 5-HT2AR levels in schizophrenia patients, yet the cause of this difference is unknown. Environmental factors, such as stress, also influence schizophrenia risk, yet little is known about how environment may affect this receptor. To determine if acute stress alters 5-HT2AR expression, we examined the effect of sleep deprivation on cortical Htr2a mRNA in mice. We found that 6 h of sleep deprivation induces a twofold increase in Htr2a mRNA, a more rapid effect than has been previously reported. This effect requires the immediate early gene early growth response 3 (Egr3), as sleep deprivation failed to induce Htr2a expression in Egr3-/- mice. These findings provide a functional link between two schizophrenia candidate genes and an explanation of how environment may influence a genetic predisposition for schizophrenia.

Keywords

References

  1. BMC Syst Biol. 2010;4:10 [PMID: 20156358]
  2. J Neural Transm Gen Sect. 1991;85(1):19-29 [PMID: 1678267]
  3. Schizophr Bull. 1992;18(3):387-425 [PMID: 1411329]
  4. Arch Gen Psychiatry. 2010 Jan;67(1):9-16 [PMID: 20048218]
  5. Trends Neurosci. 2009 Apr;32(4):225-32 [PMID: 19269047]
  6. Front Neurosci. 2010 Aug 13;4:null [PMID: 20802802]
  7. Mol Cell Neurosci. 2007 May;35(1):76-88 [PMID: 17350282]
  8. Schizophr Res. 2011 Jul;129(2-3):183-90 [PMID: 21550210]
  9. Am J Med Genet B Neuropsychiatr Genet. 2010 Oct 5;153B(7):1355-60 [PMID: 20687139]
  10. J Psychiatr Pract. 2001 Jan;7(1):3-14 [PMID: 15990497]
  11. Neuropharmacology. 2005 Feb;48(2):204-14 [PMID: 15695159]
  12. Neuroscience. 2007 Sep 7;148(3):633-43 [PMID: 17692471]
  13. Ann Med. 2005;37(2):121-9 [PMID: 16026119]
  14. Prog Brain Res. 2008;172:177-97 [PMID: 18772033]
  15. Behav Brain Res. 1984 Dec;14(3):171-82 [PMID: 6525241]
  16. Schizophr Res. 1996 Sep 18;21(3):133-9 [PMID: 8885041]
  17. Schizophr Bull. 2008 Nov;34(6):1095-105 [PMID: 18718885]
  18. Brain Res Mol Brain Res. 2005 Oct 3;139(2):317-32 [PMID: 16122832]
  19. Neuropsychopharmacology. 1996 Nov;15(5):442-55 [PMID: 8914117]
  20. Mol Cell Biol. 2005 Dec;25(23):10286-300 [PMID: 16287845]
  21. Anat Embryol (Berl). 2005 Dec;210(5-6):519-23 [PMID: 16187138]
  22. PLoS One. 2012;7(1):e30237 [PMID: 22276163]
  23. Prog Neurobiol. 2011 Jan;93(1):23-58 [PMID: 20955757]
  24. Biol Psychiatry. 1986 Dec;21(14):1407-14 [PMID: 2947636]
  25. Neuropsychopharmacology. 2008 May;33(6):1266-75 [PMID: 17637609]
  26. J Neurosci. 2003 Oct 1;23(26):8836-43 [PMID: 14523084]
  27. Front Neurosci. 2010 Oct 21;4:165 [PMID: 21088695]
  28. Sleep. 2012 Dec;35(12):1615-23 [PMID: 23204604]
  29. Nat Genet. 1998 Sep;20(1):87-91 [PMID: 9731539]
  30. J Neurosci Res. 2013 May;91(5):623-33 [PMID: 23404241]
  31. Neuroscience. 1996 Jul;73(2):531-40 [PMID: 8783268]
  32. Neuropsychopharmacology. 2012 Sep;37(10):2285-98 [PMID: 22692564]
  33. Eur Arch Psychiatry Clin Neurosci. 1991;240(3):174-81 [PMID: 1827604]
  34. Biol Psychiatry. 2004 Feb 1;55(3):225-33 [PMID: 14744462]
  35. J Neurosci. 2008 Jul 9;28(28):7193-201 [PMID: 18614689]
  36. J Neurosci Res. 2000 Jan 15;59(2):218-25 [PMID: 10650880]
  37. Am J Psychiatry. 2000 Jun;157(6):1016-8 [PMID: 10831488]
  38. Schizophr Bull. 2003;29(4):671-92 [PMID: 14989406]
  39. Life Sci. 1995;56(25):2209-22 [PMID: 7791509]
  40. Sleep Med. 2007 Apr;8(3):215-21 [PMID: 17368979]
  41. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2815-20 [PMID: 17360599]
  42. Schizophr Bull. 2008 Nov;34(6):1083-94 [PMID: 18635675]
  43. Neuroreport. 1998 Dec 1;9(17):3897-902 [PMID: 9875725]

Grants

  1. C06 RR030524/NCRR NIH HHS
  2. R01 MH097803/NIMH NIH HHS
  3. C06RR030524/NCRR NIH HHS
  4. MH097803/NIMH NIH HHS

MeSH Term

Acute Disease
Animals
Cerebral Cortex
Disease Models, Animal
Early Growth Response Protein 3
Green Fluorescent Proteins
Immunohistochemistry
Male
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
RNA, Messenger
Real-Time Polymerase Chain Reaction
Receptor, Serotonin, 5-HT2A
Sleep Deprivation
Stress, Psychological

Chemicals

Egr3 protein, mouse
RNA, Messenger
Receptor, Serotonin, 5-HT2A
enhanced green fluorescent protein
Early Growth Response Protein 3
Green Fluorescent Proteins

Word Cloud

Created with Highcharts 10.0.0schizophreniaHtr2a5-HT2ARsleepdeprivationearlyreceptoreffectgeneticfindingsserotonin2AyetEnvironmentalstressinfluenceenvironmentmayexpressionmRNAmiceimmediategenegrowthresponse3Egr3PharmacologicimplicatedetiologyRecentstudiesshownreducedlevelspatientscausedifferenceunknownfactorsalsorisklittleknownaffectdetermineacutealtersexaminedcorticalfound6hinducestwofoldincreaserapidpreviouslyreportedrequiresfailedinduceEgr3-/-providefunctionallinktwocandidategenesexplanationpredispositionExpressionRespondsRapidlyStimuliEgr3-DependentMannerSchizophrenia

Similar Articles

Cited By