Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora.

Stefanie Traeger, Minou Nowrousian
Author Information
  1. Stefanie Traeger: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  2. Minou Nowrousian: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany minou.nowrousian@rub.de.

Abstract

During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development.

Keywords

References

  1. Plant J. 2011 Apr;66(2):268-79 [PMID: 21205036]
  2. Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 [PMID: 18792934]
  3. Genetics. 2014 Mar;196(3):729-44 [PMID: 24407906]
  4. Mol Genet Genomics. 2006 Jul;276(1):87-100 [PMID: 16741730]
  5. Fungal Genet Biol. 2011 Apr;48(4):388-99 [PMID: 21134480]
  6. Eukaryot Cell. 2005 Apr;4(4):661-72 [PMID: 15821126]
  7. PLoS One. 2014;9(10):e110398 [PMID: 25329823]
  8. BMC Genomics. 2012;13:511 [PMID: 23016559]
  9. J Cell Biol. 1998 Nov 2;143(3):589-99 [PMID: 9813082]
  10. Microbiol Res. 2014 Feb-Mar;169(2-3):128-38 [PMID: 23953726]
  11. Mol Microbiol. 2015 Mar;95(6):988-1005 [PMID: 25402961]
  12. Fungal Genet Biol. 2010 Oct;47(10):855-68 [PMID: 20601042]
  13. Mol Cell Biol. 1991 Feb;11(2):872-85 [PMID: 1990290]
  14. Curr Genet. 2009 Apr;55(2):185-98 [PMID: 19277664]
  15. Mol Genet Genomics. 2005 Apr;273(2):137-49 [PMID: 15778868]
  16. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-7 [PMID: 16801547]
  17. J Basic Microbiol. 2013 Sep;53(9):742-51 [PMID: 22961396]
  18. PLoS Genet. 2010 Apr;6(4):e1000891 [PMID: 20386741]
  19. Annu Rev Cell Dev Biol. 2003;19:493-517 [PMID: 14570579]
  20. Adv Genet. 2014;87:199-244 [PMID: 25311923]
  21. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  22. Eukaryot Cell. 2011 May;10(5):683-95 [PMID: 21296914]
  23. Fungal Genet Biol. 2007 Jul;44(7):602-14 [PMID: 17092746]
  24. PLoS Pathog. 2012 Feb;8(2):e1002526 [PMID: 22346755]
  25. Eukaryot Cell. 2007 May;6(5):831-43 [PMID: 17351077]
  26. Mol Microbiol. 2008 May;68(4):813-26 [PMID: 18399939]
  27. Mol Microbiol. 2015 Mar;95(6):1006-24 [PMID: 25424886]
  28. Gene. 2006 Aug 15;378:1-10 [PMID: 16814491]
  29. Eur J Cell Biol. 2010 Dec;89(12):864-72 [PMID: 20739093]
  30. EMBO J. 1992 Jun;11(6):2159-66 [PMID: 1534751]
  31. Fungal Genet Biol. 2014 Jul;68:48-59 [PMID: 24792494]
  32. G3 (Bethesda). 2012 Feb;2(2):261-70 [PMID: 22384404]
  33. BMC Microbiol. 2005;5:64 [PMID: 16266439]
  34. PLoS One. 2010;5(10):e13193 [PMID: 20949084]
  35. Adv Microb Physiol. 1993;34:147-202 [PMID: 8452092]
  36. Mol Genet Genomics. 2006 May;275(5):492-503 [PMID: 16482473]
  37. Mol Cell Biol. 1999 Jan;19(1):450-60 [PMID: 9858569]
  38. Genetics. 1999 May;152(1):191-9 [PMID: 10224253]
  39. Fungal Genet Biol. 2006 Nov;43(11):775-88 [PMID: 16857399]
  40. Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40 [PMID: 22173481]
  41. Nature. 2011 Oct 20;478(7369):343-8 [PMID: 22012392]
  42. Nat Rev Genet. 2012 Jul;13(7):505-16 [PMID: 22705669]
  43. Eukaryot Cell. 2010 Jun;9(6):894-905 [PMID: 20435701]
  44. PLoS Genet. 2013;9(9):e1003820 [PMID: 24068976]
  45. Annu Rev Cell Dev Biol. 2004;20:87-123 [PMID: 15473836]
  46. Eukaryot Cell. 2015 Apr;14(4):345-58 [PMID: 25527523]
  47. Gene. 1992 Jan 2;110(1):119-22 [PMID: 1544568]
  48. PLoS One. 2013;8(2):e55879 [PMID: 23418468]
  49. FEMS Microbiol Lett. 1996 Sep 15;143(1):69-76 [PMID: 8807804]
  50. Trends Biochem Sci. 2004 Dec;29(12):682-8 [PMID: 15544955]
  51. Mol Microbiol. 2012 Apr;84(2):310-23 [PMID: 22375702]
  52. Mol Biol Cell. 2002 Sep;13(9):3314-24 [PMID: 12221135]
  53. Biosci Biotechnol Biochem. 2013;77(6):1275-81 [PMID: 23748777]
  54. Eur J Biochem. 2004 Jun;271(11):2153-64 [PMID: 15153106]
  55. Genetics. 1996 Dec;144(4):1425-36 [PMID: 8978031]
  56. Mol Microbiol. 2015 Feb;95(3):472-90 [PMID: 25425138]
  57. EMBO J. 1997 Jun 2;16(11):3017-24 [PMID: 9214619]
  58. Fungal Genet Biol. 2004 Nov;41(11):982-97 [PMID: 15465387]
  59. Fungal Genet Biol. 2009 Aug;46(8):531-42 [PMID: 19351563]
  60. Nat Commun. 2013;4:2092 [PMID: 23817436]
  61. Science. 2003 Oct 10;302(5643):249-55 [PMID: 12934013]
  62. Microbiology. 2004 Oct;150(Pt 10):3175-87 [PMID: 15470098]
  63. Nucleic Acids Res. 2002 May 1;30(9):e36 [PMID: 11972351]
  64. Mol Microbiol. 2007 May;64(4):923-37 [PMID: 17501918]
  65. Genetics. 2008 Sep;180(1):191-206 [PMID: 18723884]
  66. Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 [PMID: 15007097]
  67. Genetics. 2006 Mar;172(3):1521-33 [PMID: 16387884]
  68. FEMS Microbiol Lett. 2007 Oct;275(1):62-70 [PMID: 17681008]
  69. Cell. 2011 Jul 22;146(2):290-302 [PMID: 21784249]
  70. PLoS One. 2014;9(8):e104920 [PMID: 25148134]
  71. Curr Genet. 2002 Sep;41(6):367-78 [PMID: 12228806]
  72. Fungal Genet Biol. 2015 Feb;75:30-45 [PMID: 25596036]
  73. Fungal Genet Biol. 2013 Dec;61:50-60 [PMID: 24095659]
  74. Curr Genet. 2002 Jul;41(4):261-7 [PMID: 12172967]
  75. Autophagy. 2013 Jan;9(1):33-49 [PMID: 23064313]
  76. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  77. Mol Microbiol. 2012 May;84(4):748-65 [PMID: 22463819]
  78. FEMS Microbiol Lett. 2006 Apr;257(2):328-35 [PMID: 16553871]

MeSH Term

Cell Wall
Chitin Synthase
Fungal Proteins
Gene Deletion
Gene Expression Regulation, Developmental
Gene Expression Regulation, Fungal
Genes, Fungal
Genetic Complementation Test
Green Fluorescent Proteins
Phylogeny
Sordariales
Spores, Fungal
Stress, Physiological

Chemicals

Fungal Proteins
enhanced green fluorescent protein
Green Fluorescent Proteins
Chitin Synthase

Word Cloud

Created with Highcharts 10.0.0sec22genessexualdevelopmentfruitingchs7macrosporabodySordariaproteinformationseveralchitinsynthaseSNAREDeletionnormalvegetativegrowthascosporegerminationwhereasmutantstagesinvolvedfilamentousascomycetesformcomplexthree-dimensionalbodiesgenerationdispersalsporespreviousstudiesidentifiedevolutionaryconservedexpressionpatternsfungalspeciespresentfunctionalanalysistwodevelopmentallyup-regulatedascomyceteencodeclassVIIdivisionIIIsolubleN-ethylmaleimide-sensitive-factorattachmentreceptorrespectivelymutantsfullyfertileshowedsensitivitytowardcellwallstressresultedreducednumberascosporesdefectspigmentationSEC22-EGFPfusionconstructcontrolnativepromoterterminatorregionsexpresseddifferentExpressiondevelopment-relatedderegulatedincludingthreemelaninbiosynthesisdataindicatedispensableSrequiredmaturationthuslateFunctionalAnalysisDevelopmentallyRegulatedGenesAscomycete

Similar Articles

Cited By