Modification of bentonite with cationic surfactant for the enhanced retention of bisphenol A from landfill leachate.

Yi Li, Fenglai Jin, Chao Wang, Yunxiao Chen, Qing Wang, Wenlong Zhang, Dawei Wang
Author Information
  1. Yi Li: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China, envly@hhu.edu.cn.

Abstract

Bentonite was modified with cationic surfactant hexadecyl trimethyl ammonium bromide (HTAB) as landfill liner to retard the transportation of bisphenol A (BPA) for the first time. The modification was confirmed to form a lateral bi-layer in the interlayer space of bentonite by scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The introduction of HTAB into the internal position of bentonite led to an increased interlayer space of bentonite from 15.0 to 20.9 Å and a higher sorption affinity for BPA (10.449 mg/g of HTAB-bentonite and 3.413 mg/g of raw bentonite). According to the Freundlich model, the maximum adsorption capacity of the HTAB-bentonite was found to be 0.410 mg/g. The sorption capacity of raw bentonite and HTAB-bentonite both decreased at alkaline conditions. Although the hydraulic conductivity of HTAB-bentonite was higher than that of raw bentonite, results of laboratory permeability and column tests indicated that HTAB-bentonite obviously extended the BPA breakthrough time by 43.4 %. The properties of the HTAB-bentonite revealed its notable advantages as components of landfill liners material to retain BPA in leachate.

References

  1. Environ Sci Technol. 2004 Apr 15;38(8):2428-34 [PMID: 15116850]
  2. Environ Sci Pollut Res Int. 2012 May;19(4):1229-36 [PMID: 22057850]
  3. Reprod Toxicol. 2007 Aug-Sep;24(2):139-77 [PMID: 17825522]
  4. J Hazard Mater. 2009 Dec 15;172(1):353-62 [PMID: 19656623]
  5. Chemosphere. 2010 Feb;78(6):688-94 [PMID: 20042218]
  6. J Colloid Interface Sci. 2004 Dec 1;280(1):44-54 [PMID: 15476772]
  7. J Hazard Mater. 2009 Mar 15;162(2-3):791-8 [PMID: 18597933]
  8. Water Res. 2003 Aug;37(14):3530-7 [PMID: 12834747]
  9. J Hazard Mater. 2006 Aug 25;136(3):681-9 [PMID: 16460877]
  10. Chemosphere. 2001 Feb;42(4):415-8 [PMID: 11100793]
  11. Endocrinology. 1993 Jun;132(6):2279-86 [PMID: 8504731]
  12. J Environ Manage. 2012 Mar;95 Suppl:S182-7 [PMID: 21376446]
  13. J Hazard Mater. 2009 Sep 30;169(1-3):324-32 [PMID: 19464105]
  14. J Colloid Interface Sci. 2010 Aug 15;348(2):585-90 [PMID: 20621825]

MeSH Term

Adsorption
Bentonite
Benzhydryl Compounds
Cetrimonium
Cetrimonium Compounds
Microscopy, Electron, Scanning
Phenols
Spectroscopy, Fourier Transform Infrared
Surface-Active Agents
Water Pollutants, Chemical
X-Ray Diffraction

Chemicals

Benzhydryl Compounds
Cetrimonium Compounds
Phenols
Surface-Active Agents
Water Pollutants, Chemical
Bentonite
bisphenol A
Cetrimonium

Word Cloud

Created with Highcharts 10.0.0bentoniteHTAB-bentoniteBPAlandfillrawcationicsurfactantHTABbisphenoltimeinterlayerspace0highersorptioncapacityleachateBentonitemodifiedhexadecyltrimethylammoniumbromidelinerretardtransportationfirstmodificationconfirmedformlateralbi-layerscanningelectronmicroscopeX-raydiffractionFouriertransforminfraredspectroscopyintroductioninternalpositionledincreased15209 Åaffinity10449 mg/g3413 mg/gAccordingFreundlichmodelmaximumadsorptionfound410 mg/gdecreasedalkalineconditionsAlthoughhydraulicconductivityresultslaboratorypermeabilitycolumntestsindicatedobviouslyextendedbreakthrough434 %propertiesrevealednotableadvantagescomponentslinersmaterialretainModificationenhancedretention

Similar Articles

Cited By