Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules.

Hongyang Xu, David Stapleton, Robyn M Murphy
Author Information
  1. Hongyang Xu: School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.

Abstract

Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

References

  1. Int J Biol Macromol. 2009 Dec 1;45(5):478-82 [PMID: 19720076]
  2. Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H595-604 [PMID: 21131479]
  3. J Mol Evol. 1997 Oct;45(4):446-55 [PMID: 9321423]
  4. Biochem Biophys Res Commun. 2007 Nov 3;362(4):811-5 [PMID: 17767922]
  5. Anal Biochem. 2009 Mar 15;386(2):270-5 [PMID: 19161968]
  6. Am J Physiol Cell Physiol. 2012 Dec 1;303(11):C1146-55 [PMID: 23015546]
  7. J Physiol. 2013 Dec 1;591(23):5823-31 [PMID: 24127618]
  8. Am J Physiol Endocrinol Metab. 2000 Mar;278(3):E398-404 [PMID: 10710493]
  9. Exp Cell Res. 2009 Apr 1;315(6):1015-28 [PMID: 19101541]
  10. Clin Exp Pharmacol Physiol. 2005 Sep;32(9):749-56 [PMID: 16173932]
  11. J Physiol. 1995 Nov 15;489 ( Pt 1):243-50 [PMID: 8583408]
  12. Acta Physiol Scand. 1978 Aug;103(4):446-55 [PMID: 152564]
  13. FEBS Lett. 1997 Nov 17;417(3):355-9 [PMID: 9409751]
  14. PLoS Biol. 2004 Oct;2(10):e348 [PMID: 15486583]
  15. Acta Physiol (Oxf). 2010 Aug;199(4):489-98 [PMID: 20353490]
  16. J Appl Physiol (1985). 2002 Nov;93(5):1598-607 [PMID: 12381743]
  17. Eur J Biochem. 1987 Dec 15;169(3):497-502 [PMID: 3121316]
  18. J Physiol. 2006 Oct 15;576(Pt 2):595-612 [PMID: 16857710]
  19. J Embryol Exp Morphol. 1969 Apr;21(2):271-84 [PMID: 5822887]
  20. J Physiol. 2009 Jul 15;587(Pt 14):3679-90 [PMID: 19470780]
  21. Am J Physiol Cell Physiol. 2006 Sep;291(3):C518-28 [PMID: 16611740]
  22. Eur J Biochem. 1988 Sep 15;176(2):391-5 [PMID: 2970965]
  23. Diabetologia. 2013 Mar;56(3):675-9 [PMID: 23242170]
  24. J Appl Physiol (1985). 2000 Feb;88(2):794-6 [PMID: 10658052]
  25. Eur J Biochem. 1975 Feb 3;51(1):105-15 [PMID: 1122910]
  26. J Appl Physiol (1985). 2005 Sep;99(3):957-62 [PMID: 15860684]
  27. Eur J Biochem. 1990 Apr 20;189(1):199-204 [PMID: 2110063]
  28. FASEB J. 1988 Dec;2(15):3097-103 [PMID: 2973423]
  29. J Physiol. 1993 Jan;460:443-53 [PMID: 8487203]
  30. Eur J Biochem. 1989 Oct 20;185(1):119-25 [PMID: 2806254]
  31. Biochim Biophys Acta. 2000 May 23;1478(2):165-85 [PMID: 10825529]

MeSH Term

Animals
Electric Stimulation
Endopeptidases
Glucosyltransferases
Glycogen
Glycogen Phosphorylase
Glycoproteins
Male
Muscle Fibers, Fast-Twitch
Muscle Fibers, Slow-Twitch
Muscle, Skeletal
Rats, Long-Evans
Temperature
alpha-Amylases

Chemicals

Glycoproteins
glycogenin
Glycogen
Glucosyltransferases
Glycogen Phosphorylase
alpha-Amylases
Endopeptidases
glucagon-degrading enzyme

Word Cloud

Created with Highcharts 10.0.0glycogenmuscleglycogeninGDEGP%α-amylasepost-mortemassociatedgranulesEDLpoolmusclesratSOLnecessarydetectstimulationrevealalthoughdetectedcomparedfreshdiffusibleproteins∼60totalGlycogeninglycogen-debranchingenzymephosphorylaseimportantenzymescontributeparticlemetabolismLong-EvansHoodedwholehomogenatespreparedextensordigitorumlongusfast-twitchsoleusoxidativepredominantlyslowtwitchincludereleasesglucosylunits∼12intramuscularbrokenusingeithervitroelectricalleavingroomtemperature>3hdelayedElectricalunlessadded∼50∼30respectivelyamounttreatmentSinglefibresdissectedmechanicallyskinnedremovesurfacemembranepresencefreelyiecytoplasmiclocalizationWesternblottingDiffusibility∼20differentincreased∼15physiologicallyrelevantcircumstanceswithindetectionlimits:1cellularalways2halfoutertiers3everweakly4additionorderRatskeletaldegradationpathwaysdifferentialassociationglycogen-related

Similar Articles

Cited By