Modulation of human endogenous retrovirus (HERV) transcription during persistent and de novo HIV-1 infection.

Michelle Vincendeau, Ingmar Göttesdorfer, Julia M H Schreml, Armand G Ngounou Wetie, Jens Mayer, Alex D Greenwood, Markus Helfer, Susanne Kramer, Wolfgang Seifarth, Kamyar Hadian, Ruth Brack-Werner, Christine Leib-Mösch
Author Information
  1. Michelle Vincendeau: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. michelle.vincendeau@helmholtz-muenchen.de.
  2. Ingmar Göttesdorfer: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. ingmar.goettesdorfer@helmholtz-muenchen.de.
  3. Julia M H Schreml: Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany. julia.schreml@uk-koeln.de.
  4. Armand G Ngounou Wetie: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. ngounoa@clarkson.edu.
  5. Jens Mayer: Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany. jens.mayer@uniklinik-saarland.de.
  6. Alex D Greenwood: Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany. greenwood@izw-berlin.de.
  7. Markus Helfer: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. markus.helfer@helmholtz-muenchen.de.
  8. Susanne Kramer: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. susanne-kramer@gmx.com.
  9. Wolfgang Seifarth: Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany. wolfgang.seifarth@medma.uni-heidelberg.de.
  10. Kamyar Hadian: Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. kamyar.hadian@helmholtz-muenchen.de.
  11. Ruth Brack-Werner: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. brack@helmholtz-muenchen.de.
  12. Christine Leib-Mösch: Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. leib@helmholtz-muenchen.de.

Abstract

BACKGROUND: The human genome contains multiple LTR elements including human endogenous retroviruses (HERVs) that together account for approximately 8-9% of the genomic DNA. At least 40 different HERV groups have been assigned to three major HERV classes on the basis of their homologies to exogenous retroviruses. Although most HERVs are silenced by a variety of genetic and epigenetic mechanisms, they may be reactivated by environmental stimuli such as exogenous viruses and thus may contribute to pathogenic conditions. The objective of this study was to perform an in-depth analysis of the influence of HIV-1 infection on HERV activity in different cell types.
RESULTS: A retrovirus-specific microarray that covers major HERV groups from all three classes was used to analyze HERV transcription patterns in three persistently HIV-1 infected cell lines of different cellular origins and in their uninfected counterparts. All three persistently infected cell lines showed increased transcription of multiple class I and II HERV groups. Up-regulated transcription of five HERV taxa (HERV-E, HERV-T, HERV-K (HML-10) and two ERV9 subgroups) was confirmed by quantitative reverse transcriptase PCR analysis and could be reversed by knock-down of HIV-1 expression with HIV-1-specific siRNAs. Cells infected de novo by HIV-1 showed stronger transcriptional up-regulation of the HERV-K (HML-2) group than persistently infected cells of the same origin. Analysis of transcripts from individual members of this group revealed up-regulation of predominantly two proviral loci (ERVK-7 and ERVK-15) on chromosomes 1q22 and 7q34 in persistently infected KE37.1 cells, as well as in de novo HIV-1 infected LC5 cells, while only one single HML-2 locus (ERV-K6) on chromosome 7p22.1 was activated in persistently infected LC5 cells.
CONCLUSIONS: Our results demonstrate that HIV-1 can alter HERV transcription patterns of infected cells and indicate a correlation between activation of HERV elements and the level of HIV-1 production. Moreover, our results suggest that the effects of HIV-1 on HERV activity may be far more extensive and complex than anticipated from initial studies with clinical material.

References

  1. Genes Chromosomes Cancer. 2010 May;49(5):401-11 [PMID: 20095041]
  2. Nat Med. 2009 Aug;15(8):893-900 [PMID: 19543283]
  3. Mol Cell Biol. 2004 May;24(9):3860-73 [PMID: 15082780]
  4. Gene. 2007 Apr 1;390(1-2):175-9 [PMID: 17045761]
  5. Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9 [PMID: 15310846]
  6. J RNAi Gene Silencing. 2005 Oct 14;1(2):56-65 [PMID: 19771206]
  7. Antimicrob Agents Chemother. 2010 Dec;54(12):5257-68 [PMID: 20876377]
  8. Retrovirology. 2007;4:39 [PMID: 17550625]
  9. J Virol. 2009 Dec;83(23):12643-50 [PMID: 19741000]
  10. J Virol. 2005 Sep;79(17):10890-901 [PMID: 16103141]
  11. AIDS. 1990 Jun;4(6):527-35 [PMID: 2201317]
  12. J Infect Dis. 2006 Nov 15;194(10):1447-9 [PMID: 17054075]
  13. J Virol Methods. 2003 Sep;112(1-2):79-91 [PMID: 12951215]
  14. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4894-9 [PMID: 15044706]
  15. Curr Biol. 2005 Jan 26;15(2):166-70 [PMID: 15668174]
  16. J Virol. 2005 Jan;79(1):341-52 [PMID: 15596828]
  17. Biochem Biophys Res Commun. 2004 Jan 23;313(4):856-62 [PMID: 14706621]
  18. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  19. J Clin Virol. 2012 Jan;53(1):29-32 [PMID: 22019250]
  20. J Virol. 2008 Sep;82(17):8762-70 [PMID: 18562521]
  21. Retrovirology. 2013;10:16 [PMID: 23394165]
  22. BMC Genomics. 2008;9:354 [PMID: 18664271]
  23. Cytogenet Genome Res. 2005;110(1-4):462-7 [PMID: 16093699]
  24. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  25. Genomics. 2001 Mar 1;72(2):137-44 [PMID: 11401426]
  26. Nat Genet. 1999 Mar;21(3):257-8 [PMID: 10080172]
  27. Virology. 2009 Mar 1;385(1):261-6 [PMID: 19070345]
  28. Retrovirology. 2011;8:90 [PMID: 22067224]
  29. J Virol. 2004 Jul;78(14):7852-60 [PMID: 15220463]
  30. J Invest Dermatol. 1999 Oct;113(4):587-94 [PMID: 10504445]
  31. J Virol. 2009 Jan;83(2):1105-14 [PMID: 19004950]
  32. Retrovirology. 2009;6:37 [PMID: 19368703]
  33. AIDS Res Hum Retroviruses. 2007 Sep;23(9):1083-6 [PMID: 17919102]
  34. Clin Vaccine Immunol. 2012 Feb;19(2):288-92 [PMID: 22205657]
  35. J Virol. 2007 Jun;81(11):5607-16 [PMID: 17360752]
  36. AIDS. 2007 Nov 12;21(17):2271-81 [PMID: 18090275]
  37. AIDS Res Hum Retroviruses. 2006 Oct;22(10):979-84 [PMID: 17067267]
  38. Virol J. 2013;10:151 [PMID: 23679954]
  39. J Virol. 2003 Oct;77(19):10414-22 [PMID: 12970426]
  40. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13404-8 [PMID: 10557333]
  41. PLoS One. 2014;9(1):e87487 [PMID: 24489923]
  42. J Clin Virol. 2009 Sep;46(1):15-9 [PMID: 19505847]
  43. Ann Clin Lab Sci. 2013 Spring;43(2):122-5 [PMID: 23694785]
  44. Retrovirology. 2012;9:6 [PMID: 22248111]
  45. J Virol. 2012 Jan;86(1):262-76 [PMID: 22031938]
  46. J Neurovirol. 2005 Feb;11(1):23-33 [PMID: 15804956]
  47. Mol Biol Evol. 2005 Apr;22(4):814-7 [PMID: 15659556]
  48. J Biol Chem. 2004 Sep 17;279(38):39520-31 [PMID: 15258149]
  49. J Mol Evol. 2005 Nov;61(5):706-15 [PMID: 16211423]
  50. J Virol. 2008 Sep;82(17):8743-61 [PMID: 18562517]
  51. J Gen Virol. 1992 Sep;73 ( Pt 9):2463-6 [PMID: 1402820]
  52. Virus Genes. 1997;15(2):123-33 [PMID: 9421877]
  53. J Virol. 2014 Jun;88(11):6213-23 [PMID: 24648457]
  54. AIDS. 2010 Oct 23;24(16):2433-42 [PMID: 20827171]
  55. AIDS. 2007 Nov 30;21(18):2417-24 [PMID: 18025878]
  56. Viruses. 2011 Nov;3(11):2146-59 [PMID: 22163338]
  57. Retrovirology. 2013;10:132 [PMID: 24219971]
  58. J Virol. 2012 Aug;86(15):7790-805 [PMID: 22593154]
  59. J Virol. 2011 Jul;85(13):6205-11 [PMID: 21507965]
  60. Retrovirology. 2005;2:50 [PMID: 16092962]
  61. Immunity. 2001 Oct;15(4):579-89 [PMID: 11672540]
  62. Genome Res. 2006 Dec;16(12):1548-56 [PMID: 17077319]
  63. J Clin Virol. 2009 Sep;46(1):47-8 [PMID: 19505843]
  64. J Virol. 2011 Nov;85(21):11526-31 [PMID: 21880743]
  65. J Virol. 2009 Mar;83(6):2429-35 [PMID: 19116259]
  66. Mob DNA. 2011 May 04;2(1):7 [PMID: 21542922]
  67. J Virol. 1999 Nov;73(11):9496-507 [PMID: 10516058]
  68. PLoS Pathog. 2007 Jan;3(1):e10 [PMID: 17257061]
  69. Oncogene. 2005 Apr 28;24(19):3223-8 [PMID: 15735668]
  70. J Gen Virol. 1996 May;77 ( Pt 5):1101-10 [PMID: 8609476]
  71. PLoS Pathog. 2007 Nov;3(11):e165 [PMID: 17997601]
  72. J Virol. 2011 Jul;85(14):6977-85 [PMID: 21525339]
  73. J Immunol. 2006 Aug 15;177(4):2056-60 [PMID: 16887963]
  74. J Virol. 2001 Nov;75(21):10359-71 [PMID: 11581404]
  75. Retrovirology. 2006;3:44 [PMID: 16822326]
  76. PLoS Pathog. 2013;9(12):e1003834 [PMID: 24385908]
  77. Nucleic Acids Res. 2012 Apr;40(8):3548-62 [PMID: 22187158]
  78. Rev Med Virol. 2009 Sep;19(5):273-86 [PMID: 19714703]
  79. Cold Spring Harb Perspect Med. 2012 May;2(5):a006940 [PMID: 22553496]
  80. J Virol. 2008 Feb;82(4):1808-18 [PMID: 18077721]
  81. J Neurovirol. 2006 Feb;12(1):65-71 [PMID: 16595376]
  82. J Virol. 2014 Oct;88(19):11108-20 [PMID: 25056891]
  83. Nat Med. 2003 Nov;9(11):1404-7 [PMID: 14528300]
  84. Annu Rev Genet. 2008;42:143-63 [PMID: 18624631]
  85. Cell Mol Life Sci. 2008 Nov;65(21):3366-82 [PMID: 18818873]
  86. AIDS. 1992 Mar;6(3):273-85 [PMID: 1373627]

MeSH Term

Cell Line
Endogenous Retroviruses
Gene Expression Profiling
HIV Infections
HIV-1
Humans
Microarray Analysis
Transcription, Genetic
Virus Activation

Word Cloud

Created with Highcharts 10.0.0HERVHIV-1infectedtranscriptionpersistentlycellsthreehumandifferentgroupsmaycelldenovomultipleelementsendogenousretrovirusesHERVsmajorclassesexogenousanalysisinfectionactivitypatternslinesshowedHERV-Ktwoup-regulationHML-2group1LC5resultsBACKGROUND:genomecontainsLTRincludingtogetheraccountapproximately8-9%genomicDNAleast40assignedbasishomologiesAlthoughsilencedvarietygeneticepigeneticmechanismsreactivatedenvironmentalstimulivirusesthuscontributepathogenicconditionsobjectivestudyperformin-depthinfluencetypesRESULTS:retrovirus-specificmicroarraycoversusedanalyzecellularoriginsuninfectedcounterpartsincreasedclassIIUp-regulatedfivetaxaHERV-EHERV-THML-10ERV9subgroupsconfirmedquantitativereversetranscriptasePCRreversedknock-downexpressionHIV-1-specificsiRNAsCellsstrongertranscriptionaloriginAnalysistranscriptsindividualmembersrevealedpredominantlyprovirallociERVK-7ERVK-15chromosomes1q227q34KE37wellonesinglelocusERV-K6chromosome7p22activatedCONCLUSIONS:demonstratecanalterindicatecorrelationactivationlevelproductionMoreoversuggesteffectsfarextensivecomplexanticipatedinitialstudiesclinicalmaterialModulationretroviruspersistent

Similar Articles

Cited By