Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement.

Thierry Duchesne, Daniel Fortin, Louis-Paul Rivest
Author Information
  1. Thierry Duchesne: Département de mathématiques et de statistique, Université Laval, Québec, Québec, Canada.
  2. Daniel Fortin: Département de biologie and Centre d'étude de la forêt, Département de Biologie, Université Laval, Québec, Québec, Canada.
  3. Louis-Paul Rivest: Département de mathématiques et de statistique, Université Laval, Québec, Québec, Canada.

Abstract

Animal movement has a fundamental impact on population and community structure and dynamics. Biased correlated random walks (BCRW) and step selection functions (SSF) are commonly used to study movements. Because no studies have contrasted the parameters and the statistical properties of their estimators for models constructed under these two Lagrangian approaches, it remains unclear whether or not they allow for similar inference. First, we used the Weak Law of Large Numbers to demonstrate that the log-likelihood function for estimating the parameters of BCRW models can be approximated by the log-likelihood of SSFs. Second, we illustrated the link between the two approaches by fitting BCRW with maximum likelihood and with SSF to simulated movement data in virtual environments and to the trajectory of bison (Bison bison L.) trails in natural landscapes. Using simulated and empirical data, we found that the parameters of a BCRW estimated directly from maximum likelihood and by fitting an SSF were remarkably similar. Movement analysis is increasingly used as a tool for understanding the influence of landscape properties on animal distribution. In the rapidly developing field of movement ecology, management and conservation biologists must decide which method they should implement to accurately assess the determinants of animal movement. We showed that BCRW and SSF can provide similar insights into the environmental features influencing animal movements. Both techniques have advantages. BCRW has already been extended to allow for multi-state modeling. Unlike BCRW, however, SSF can be estimated using most statistical packages, it can simultaneously evaluate habitat selection and movement biases, and can easily integrate a large number of movement taxes at multiple scales. SSF thus offers a simple, yet effective, statistical technique to identify movement taxis.

Associated Data

Dryad | 10.5061/dryad.217T3

References

  1. PLoS One. 2014;9(6):e99938 [PMID: 24979047]
  2. Ecol Appl. 2011 Apr;21(3):944-54 [PMID: 21639057]
  3. Oecologia. 2005 Sep;145(2):335-43 [PMID: 15965755]
  4. Biom J. 2008 Feb;50(1):97-109 [PMID: 17849385]
  5. Ecol Appl. 2011 Jul;21(5):1871-85 [PMID: 21830725]
  6. Ecology. 2012 Nov;93(11):2336-42 [PMID: 23236905]
  7. J Anim Ecol. 2014 Jan;83(1):185-98 [PMID: 23859231]
  8. Ecology. 2013 Nov;94(11):2619-31 [PMID: 24400513]
  9. Ecol Lett. 2014 Mar;17(3):261-72 [PMID: 24350897]
  10. Ecol Lett. 2013 Oct;16(10):1316-29 [PMID: 23953128]
  11. J R Soc Interface. 2008 Aug 6;5(25):813-34 [PMID: 18426776]
  12. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19060-5 [PMID: 19060194]
  13. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  14. Ecology. 2009 Dec;90(12):3554-65 [PMID: 20120822]
  15. J Anim Ecol. 2010 May;79(3):548-55 [PMID: 20202010]
  16. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2157-62 [PMID: 20566493]
  17. Ecology. 2008 Apr;89(4):1112-9 [PMID: 18481535]

MeSH Term

Algorithms
Animal Distribution
Animals
Bison
Computer Simulation
Ecosystem
Likelihood Functions
Monte Carlo Method
Saskatchewan

Word Cloud

Created with Highcharts 10.0.0movementBCRWSSFcanusedparametersstatisticalsimilaranimalAnimalBiasedselectionmovementspropertiesmodelstwoapproachesallowlog-likelihoodfittingmaximumlikelihoodsimulateddatabisonestimatedMovementfundamentalimpactpopulationcommunitystructuredynamicscorrelatedrandomwalksstepfunctionscommonlystudystudiescontrastedestimatorsconstructedLagrangianremainsunclearwhetherinferenceFirstWeakLawLargeNumbersdemonstratefunctionestimatingapproximatedSSFsSecondillustratedlinkvirtualenvironmentstrajectoryBisonLtrailsnaturallandscapesUsingempiricalfounddirectlyremarkablyanalysisincreasinglytoolunderstandinginfluencelandscapedistributionrapidlydevelopingfieldecologymanagementconservationbiologistsmustdecidemethodimplementaccuratelyassessdeterminantsshowedprovideinsightsenvironmentalfeaturesinfluencingtechniquesadvantagesalreadyextendedmulti-statemodelingUnlikehoweverusingpackagessimultaneouslyevaluatehabitatbiaseseasilyintegratelargenumbertaxesmultiplescalesthusofferssimpleyeteffectivetechniqueidentifytaxisEquivalenceStepSelectionFunctionsCorrelatedRandomWalksStatisticalInference

Similar Articles

Cited By