A sexually transmitted infection screening algorithm based on semiparametric regression models.

Zhuokai Li, Hai Liu, Wanzhu Tu
Author Information
  1. Zhuokai Li: Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, U.S.A.
  2. Hai Liu: Department of Biostatistics, Indiana University Schools of Medicine and Public Health, 410 West 10th Street, Indianapolis, IN 46202, U.S.A.
  3. Wanzhu Tu: Department of Biostatistics, Indiana University Schools of Medicine and Public Health, 410 West 10th Street, Indianapolis, IN 46202, U.S.A.

Abstract

Sexually transmitted infections (STIs) with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis are among the most common infectious diseases in the United States, disproportionately affecting young women. Because a significant portion of the infections present no symptoms, infection control relies primarily on disease screening. However, universal STI screening in a large population can be expensive. In this paper, we propose a semiparametric model-based screening algorithm. The model quantifies organism-specific infection risks in individual subjects and accounts for the within-subject interdependence of the infection outcomes of different organisms and the serial correlations among the repeated assessments of the same organism. Bivariate thin-plate regression spline surfaces are incorporated to depict the concurrent influences of age and sexual partners on infection acquisition. Model parameters are estimated by using a penalized likelihood method. For inference, we develop a likelihood-based resampling procedure to compare the bivariate effect surfaces across outcomes. Simulation studies are conducted to evaluate the model fitting performance. A screening algorithm is developed using data collected from an epidemiological study of young women at increased risk of STIs. We present evidence that the three organisms have distinct age and partner effect patterns; for C. trachomatis, the partner effect is more pronounced in younger adolescents. Predictive performance of the proposed screening algorithm is assessed through a receiver operating characteristic analysis. We show that the model-based screening algorithm has excellent accuracy in identifying individuals at increased risk, and thus can be used to assist STI screening in clinical practice.

Keywords

References

  1. JAMA. 1998 Aug 12;280(6):521-6 [PMID: 9707141]
  2. Clin Infect Dis. 2007 Nov 15;45(10):1319-26 [PMID: 17968828]
  3. Ann Intern Med. 2007 Jul 17;147(2):128-34 [PMID: 17576996]
  4. Ann Intern Med. 2007 Jul 17;147(2):89-96 [PMID: 17638719]
  5. Biometrics. 2012 Jun;68(2):429-36 [PMID: 22070739]
  6. Biometrics. 1998 Sep;54(3):976-88 [PMID: 9750246]
  7. Sex Transm Dis. 2005 Oct;32(10):593-8 [PMID: 16205299]
  8. J Clin Microbiol. 2000 Mar;38(3):1105-12 [PMID: 10699004]
  9. J Am Stat Assoc. 2008 Dec 1;103(484):1496-1507 [PMID: 19300533]
  10. Perspect Sex Reprod Health. 2004 Jan-Feb;36(1):6-10 [PMID: 14982671]
  11. Aust N Z J Stat. 2010 Sep;52(3):275-288 [PMID: 21731424]
  12. Sex Transm Dis. 2005 Apr;32(4):255-9 [PMID: 15788927]
  13. Sex Transm Dis. 1999 Apr;26(4 Suppl):S2-7 [PMID: 10227693]
  14. Sex Transm Dis. 2003 May;30(5):472-6 [PMID: 12916141]
  15. Sex Transm Dis. 2011 Aug;38(8):727-34 [PMID: 21844702]
  16. Sex Transm Infect. 2000 Oct;76(5):375-80 [PMID: 11141855]
  17. Biometrics. 1996 Jun;52(2):740-50 [PMID: 8672710]
  18. J R Stat Soc Ser A Stat Soc. 2011 Oct;174(4):975-989 [PMID: 22022023]
  19. Sex Transm Dis. 1999 Jan;26(1):26-32 [PMID: 9918320]
  20. Sex Transm Dis. 2000 Oct;27(9):504-7 [PMID: 11034524]
  21. Sex Transm Dis. 2005 Apr;32(4):260-4 [PMID: 15788928]
  22. J Clin Microbiol. 2001 Mar;39(3):1008-16 [PMID: 11230419]
  23. Arch Pediatr Adolesc Med. 2009 Dec;163(12):1106-11 [PMID: 19996047]
  24. Biostatistics. 2003 Jan;4(1):57-74 [PMID: 12925330]

Grants

  1. R01 HD042404/NICHD NIH HHS
  2. UL1 TR001108/NCATS NIH HHS
  3. U19 AI031494/NIAID NIH HHS
  4. U19 AI 031494/NIAID NIH HHS
  5. R01 HD044387/NICHD NIH HHS

MeSH Term

Adolescent
Algorithms
Female
Humans
Male
Mass Screening
ROC Curve
Regression Analysis
Sexually Transmitted Diseases

Word Cloud

Created with Highcharts 10.0.0screeninginfectionalgorithmoutcomessurfaceseffecttransmittedinfectionsSTIstrachomatisamongyoungwomenpresentSTIcansemiparametricmodel-basedmodelorganismsregressionageusingpenalizedlikelihoodresamplingbivariateperformanceincreasedriskpartnerSexuallyChlamydiaNeisseriagonorrhoeaeTrichomonasvaginaliscommoninfectiousdiseasesUnitedStatesdisproportionatelyaffectingsignificantportionsymptomscontrolreliesprimarilydiseaseHoweveruniversallargepopulationexpensivepaperproposequantifiesorganism-specificrisksindividualsubjectsaccountswithin-subjectinterdependencedifferentserialcorrelationsrepeatedassessmentsorganismBivariatethin-platesplineincorporateddepictconcurrentinfluencessexualpartnersacquisitionModelparametersestimatedmethodinferencedeveloplikelihood-basedprocedurecompareacrossSimulationstudiesconductedevaluatefittingdevelopeddatacollectedepidemiologicalstudyevidencethreedistinctpatternsCpronouncedyoungeradolescentsPredictiveproposedassessedreceiveroperatingcharacteristicanalysisshowexcellentaccuracyidentifyingindividualsthususedassistclinicalpracticesexuallybasedmodelsmultiplebinarysplines

Similar Articles

Cited By