CRH promotes S. pneumoniae growth in vitro and increases lung carriage in mice.

Colette G Ngo Ndjom, Harlan P Jones
Author Information
  1. Colette G Ngo Ndjom: Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX USA ; Center for Biotechnology Education, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD USA.
  2. Harlan P Jones: Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX USA.

Abstract

Streptococcus pneumoniae (S. pneumoniae), a commensal across the nasal passages, is responsible for the majority of infectious pneumonia cases worldwide. Previous studies have shown that hormonal factors may be influential in regulating S. pneumoniae's transition from a non-pathogen to a pathogenic state. The current study investigated the effects of corticotropin-releasing hormone (CRH), a peptide hormone involved in stress, on the pathogenicity of S. pneumoniae. Mice were infected with CRH-treated S. pneumoniae via intranasal route, showing an increase in pulmonary bacterial burden. We also quantified S. pneumoniae's response to CRH through limited serial dilutions and growth curve analysis. We demonstrated that CRH promotes S. pneumoniae titer-dependent proliferation, as well as accelerates log-phase growth. Results also showed an increase in pneumococcal-associated virulence protein A virulence gene expression in response to CRH. These results demonstrate a role for CRH in S. pneumoniae pathogenicity, thus implicating CRH in mediating the transition of S. pneumoniae into a pathogenic state.

Keywords

References

  1. Front Cell Infect Microbiol. 2014 Aug 20;4:114 [PMID: 25191646]
  2. Immunol Res. 2014 May;58(2-3):193-210 [PMID: 24798553]
  3. J Immunol. 2013 May 1;190(9):4717-24 [PMID: 23543756]
  4. Animal. 2010 Jul;4(7):1248-57 [PMID: 22444620]
  5. Curr Infect Dis Rep. 2014 May;16(5):405 [PMID: 24817026]
  6. PLoS One. 2012;7(12):e51521 [PMID: 23251564]
  7. Science. 2014 Sep 12;345(6202):1299-301 [PMID: 25214620]
  8. PLoS One. 2014 Oct 30;9(10):e111129 [PMID: 25356595]
  9. BMC Pulm Med. 2014 Jul 03;14:109 [PMID: 24990471]
  10. Life Sci. 2000 Nov 10;67(25):3075-85 [PMID: 11125844]
  11. J Neurol. 2012 Feb;259(2):225-36 [PMID: 21706150]
  12. BMC Microbiol. 2007 Jan 30;7:8 [PMID: 17263883]
  13. FEMS Microbiol Ecol. 2014 Dec;90(3):761-9 [PMID: 25264299]
  14. J Allergy Clin Immunol. 2012 May;129(5):1410-3 [PMID: 22360979]
  15. MBio. 2014 Sep 09;5(5):e01441-14 [PMID: 25205092]
  16. Minerva Anestesiol. 2014 Dec;80(12 ):1336-44 [PMID: 24518215]
  17. Peptides. 2014 Nov;61:98-106 [PMID: 25236411]
  18. J Neuroendocrinol. 2014 Sep;26(9):557-72 [PMID: 24724595]
  19. Mediators Inflamm. 2013;2013:490346 [PMID: 24453422]
  20. Lancet. 2003 Jan 11;361(9352):130-5 [PMID: 12531580]
  21. Am J Physiol Lung Cell Mol Physiol. 2014 Jul 15;307(2):L141-8 [PMID: 24838749]
  22. Trop Med Health. 2014 Jun;42(2 Suppl):83-6 [PMID: 25425955]
  23. Microb Ecol. 2014 Feb;67(2):392-401 [PMID: 24370863]
  24. J Bacteriol. 2000 Nov;182(21):6091-8 [PMID: 11029429]
  25. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2084-9 [PMID: 22308467]
  26. Psychol Rep. 2014 Apr;114(2):377-89 [PMID: 24897896]
  27. F1000Prime Rep. 2014 Sep 04;6:82 [PMID: 25343039]
  28. Anim Health Res Rev. 2014 Dec;15(2):172-4 [PMID: 25358864]
  29. J Neurol. 2012 Jul;259(7):1453-60 [PMID: 22222857]
  30. Clin Microbiol Rev. 2014 Oct;27(4):647-64 [PMID: 25278570]
  31. Microbiology. 2013 Nov;159(Pt 11):2333-41 [PMID: 23963302]
  32. Infect Immun. 2005 May;73(5):2680-9 [PMID: 15845469]
  33. BMC Microbiol. 2014 Jul 04;14:180 [PMID: 24996423]
  34. Front Integr Neurosci. 2013 Aug 13;7:56 [PMID: 23964208]
  35. PLoS One. 2011;6(12):e28523 [PMID: 22162775]
  36. Mol Psychiatry. 2015 Feb;20(1):32-47 [PMID: 25486982]
  37. Allergy Asthma Proc. 2014 Sep-Oct;35(5):398-403 [PMID: 25295807]
  38. FEMS Microbiol Lett. 2001 Jan 15;194(2):163-9 [PMID: 11164302]
  39. Trends Microbiol. 2008 Feb;16(2):55-64 [PMID: 18191570]
  40. Mol Neurobiol. 2014 Oct;50(2):626-46 [PMID: 24705860]
  41. Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):705-11 [PMID: 25413925]
  42. Adv Appl Microbiol. 2008;64:75-105 [PMID: 18485281]
  43. Scientifica (Cairo). 2013;2013:361073 [PMID: 24381789]
  44. Adv Exp Med Biol. 2014;817:255-76 [PMID: 24997038]
  45. Antimicrob Resist Infect Control. 2014 May 21;3:16 [PMID: 24851182]
  46. Front Microbiol. 2014 Nov 06;5:584 [PMID: 25414697]
  47. Endocrinology. 2014 Aug;155(8):2900-8 [PMID: 24848868]
  48. FEMS Microbiol Lett. 2007 Apr;269(2):221-8 [PMID: 17229058]
  49. FEMS Microbiol Lett. 2009 Oct;299(1):100-9 [PMID: 19686346]
  50. J Neuroimmunol. 2011 Aug 15;237(1-2):57-65 [PMID: 21774994]
  51. Brain Behav Immun. 2008 May;22(4):552-64 [PMID: 18166336]
  52. Vet Res. 2011 Dec 07;42:118 [PMID: 22151081]
  53. FEMS Microbiol Lett. 2003 May 16;222(1):39-43 [PMID: 12757944]
  54. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2010 Aug;45(8):656-9 [PMID: 21055242]
  55. BMC Microbiol. 2014 Feb 21;14:47 [PMID: 24555828]

Word Cloud

Created with Highcharts 10.0.0pneumoniaeSCRHhormonepathogenicitygrowthvirulenceStreptococcuscommensalpneumoniae'stransitionpathogenicstateincreasealsoresponsepromotesacrossnasalpassagesresponsiblemajorityinfectiouspneumoniacasesworldwidePreviousstudiesshownhormonalfactorsmayinfluentialregulatingnon-pathogencurrentstudyinvestigatedeffectscorticotropin-releasingpeptideinvolvedstressMiceinfectedCRH-treatedviaintranasalrouteshowingpulmonarybacterialburdenquantifiedlimitedserialdilutionscurveanalysisdemonstratedtiter-dependentproliferationwellaccelerateslog-phaseResultsshowedpneumococcal-associatedproteingeneexpressionresultsdemonstraterolethusimplicatingmediatingvitroincreaseslungcarriagemiceCorticotropinreleasinghormonesrespiratory

Similar Articles

Cited By