Strain Differences in Presynaptic Function: PROTEOMICS, ULTRASTRUCTURE, AND PHYSIOLOGY OF HIPPOCAMPAL SYNAPSES IN DBA/2J AND C57Bl/6J MICE.

A Mariette Lenselink, Diana C Rotaru, Ka Wan Li, Pim van Nierop, Priyanka Rao-Ruiz, Maarten Loos, Roel van der Schors, Yvonne Gouwenberg, Joke Wortel, Huibert D Mansvelder, August B Smit, Sabine Spijker
Author Information
  1. A Mariette Lenselink: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  2. Diana C Rotaru: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  3. Ka Wan Li: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  4. Pim van Nierop: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  5. Priyanka Rao-Ruiz: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  6. Maarten Loos: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  7. Roel van der Schors: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  8. Yvonne Gouwenberg: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  9. Joke Wortel: Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  10. Huibert D Mansvelder: Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  11. August B Smit: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
  12. Sabine Spijker: Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands. Electronic address: s.spijker@vu.nl.

Abstract

The inbred strains C57BL/6J and DBA/2J (DBA) display striking differences in a number of behavioral tasks depending on hippocampal function, such as contextual memory. Historically, this has been explained through differences in postsynaptic protein expression underlying synaptic transmission and plasticity. We measured the synaptic hippocampal protein content (iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) and mass spectrometry), CA1 synapse ultrastructural morphology, and synaptic functioning in adult C57BL/6J and DBA mice. DBA mice showed a prominent decrease in the Ras-GAP calcium-sensing protein RASAL1. Furthermore, expression of several presynaptic markers involved in exocytosis, such as syntaxin (Stx1b), Ras-related proteins (Rab3a/c), and rabphilin (Rph3a), was reduced. Ultrastructural analysis of CA1 hippocampal synapses showed a significantly lower number of synaptic vesicles and presynaptic cluster size in DBA mice, without changes in postsynaptic density or active zone. In line with this compromised presynaptic morphological and molecular phenotype in DBA mice, we found significantly lower paired-pulse facilitation and enhanced short term depression of glutamatergic synapses, indicating a difference in transmitter release and/or refilling mechanisms. Taken together, our data suggest that in addition to strain-specific postsynaptic differences, the change in dynamic properties of presynaptic transmitter release may underlie compromised synaptic processing related to cognitive functioning in DBA mice.

Keywords

References

  1. Neurosci Biobehav Rev. 2004 Sep;28(5):463-83 [PMID: 15465135]
  2. Neuron. 2004 Aug 19;43(4):563-74 [PMID: 15312654]
  3. Brain Res. 1990 Jul 23;523(2):181-7 [PMID: 2400904]
  4. Hippocampus. 1991 Apr;1(2):181-92 [PMID: 1669292]
  5. J Cell Biol. 2014 Mar 3;204(5):759-75 [PMID: 24590174]
  6. Schizophr Bull. 2014 Jul;40(4):925-35 [PMID: 23956119]
  7. J Neurosci. 2004 Jul 21;24(29):6629-37 [PMID: 15269275]
  8. Neural Plast. 2014;2014:232105 [PMID: 24511394]
  9. Hippocampus. 2015 Nov;25(11):1250-61 [PMID: 25708624]
  10. Learn Mem. 2000 May-Jun;7(3):170-9 [PMID: 10837506]
  11. Hippocampus. 2000;10(3):213-25 [PMID: 10902891]
  12. Behav Pharmacol. 2000 Nov;11(7-8):517-34 [PMID: 11198125]
  13. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]
  14. Hippocampus. 2001;11(4):391-6 [PMID: 11530843]
  15. Genes Dev. 2002 Sep 15;16(18):2350-64 [PMID: 12231625]
  16. J Cell Biol. 2003 Jun 9;161(5):899-909 [PMID: 12782683]
  17. Genes Brain Behav. 2002 Jan;1(1):55-69 [PMID: 12886950]
  18. J Biol Chem. 2004 Jan 9;279(2):987-1002 [PMID: 14532281]
  19. EMBO J. 2004 Apr 21;23(8):1749-60 [PMID: 15057271]
  20. Brain Res. 2004 Jun 4;1010(1-2):134-43 [PMID: 15126126]
  21. Brain Res. 1995 Feb 20;672(1-2):170-6 [PMID: 7749739]
  22. J Neurochem. 1995 Jun;64(6):2737-46 [PMID: 7760054]
  23. Behav Neurosci. 1996 Dec;110(6):1415-25 [PMID: 8986342]
  24. Science. 1998 Jan 9;279(5348):227-30 [PMID: 9422695]
  25. Cell. 1998 Oct 30;95(3):307-18 [PMID: 9814702]
  26. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4426-31 [PMID: 10200278]
  27. Behav Neurosci. 2005 Feb;119(1):38-54 [PMID: 15727511]
  28. J Cell Biol. 2005 Jul 18;170(2):183-90 [PMID: 16009725]
  29. J Biol Chem. 2006 Apr 14;281(15):9891-900 [PMID: 16431904]
  30. Biochem Soc Trans. 2006 Nov;34(Pt 5):846-50 [PMID: 17052212]
  31. J Neurosci. 2007 Jan 10;27(2):341-54 [PMID: 17215395]
  32. Nature. 2007 Jan 11;445(7124):168-76 [PMID: 17151600]
  33. J Proteome Res. 2007 Aug;6(8):3127-33 [PMID: 17625814]
  34. Pflugers Arch. 2008 Sep;456(6):1121-36 [PMID: 18542995]
  35. Mol Cell Proteomics. 2009 Nov;8(11):2405-17 [PMID: 19608599]
  36. Am J Hum Genet. 2010 Feb 12;86(2):113-25 [PMID: 20060087]
  37. J Neurophysiol. 2000 Nov;84(5):2484-93 [PMID: 11067991]
  38. Mol Cell Proteomics. 2010 Sep;9(9):1885-97 [PMID: 20382981]
  39. Eur J Neurosci. 2010 Nov;32(9):1452-60 [PMID: 20950357]
  40. J Neurochem. 2011 Jan;116(2):177-91 [PMID: 21077886]
  41. J Biol Chem. 2011 Apr 22;286(16):14352-61 [PMID: 21349835]
  42. J Proteome Res. 2011 Jul 1;10(7):3060-75 [PMID: 21599010]
  43. J Biol Chem. 2011 Jul 22;286(29):25495-504 [PMID: 21596744]
  44. Behav Brain Res. 2012 Jan 15;226(2):397-403 [PMID: 21971014]
  45. Cold Spring Harb Perspect Biol. 2011 Dec;3(12). pii: a005637. doi: 10.1101/cshperspect.a005637 [PMID: 22026965]
  46. Behav Neurosci. 2012 Apr;126(2):249-57 [PMID: 22309443]
  47. Glia. 2012 Jul;60(7):1067-77 [PMID: 22488940]
  48. Nature. 2012 Oct 11;490(7419):201-7 [PMID: 23060190]
  49. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):111-6 [PMID: 23251034]
  50. Learn Mem. 2013 Oct;20(10):540-52 [PMID: 24042850]
  51. Behav Genet. 1988 Jan;18(1):55-68 [PMID: 3365197]

MeSH Term

Animals
Cognition
Hippocampus
Memory
Mice
Mice, Inbred DBA
Nerve Tissue Proteins
Post-Synaptic Density
Proteome
Proteomics
Species Specificity

Chemicals

Nerve Tissue Proteins
Proteome

Word Cloud

Created with Highcharts 10.0.0DBAsynapticmicepresynapticdifferenceshippocampalpostsynapticproteinreleaseC57BL/6JDBA/2JnumberexpressionplasticityiTRAQCA1functioningshowedRASAL1exocytosissynapsessignificantlylowercompromisedtransmitterANDinbredstrainsdisplaystrikingbehavioraltasksdependingfunctioncontextualmemoryHistoricallyexplainedunderlyingtransmissionmeasuredcontentIsobaricTagsRelativeAbsoluteQuantitationmassspectrometrysynapseultrastructuralmorphologyadultprominentdecreaseRas-GAPcalcium-sensingFurthermoreseveralmarkersinvolvedsyntaxinStx1bRas-relatedproteinsRab3a/crabphilinRph3areducedUltrastructuralanalysisvesiclesclustersizewithoutchangesdensityactivezonelinemorphologicalmolecularphenotypefoundpaired-pulsefacilitationenhancedshorttermdepressionglutamatergicindicatingdifferenceand/orrefillingmechanismsTakentogetherdatasuggestadditionstrain-specificchangedynamicpropertiesmayunderlieprocessingrelatedcognitiveStrainDifferencesPresynapticFunction:PROTEOMICSULTRASTRUCTUREPHYSIOLOGYOFHIPPOCAMPALSYNAPSESINC57Bl/6JMICEelectrophysiologyneuroscienceneurotransmitterproteomics

Similar Articles

Cited By