hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine.

Dario Melgari, Kieran E Brack, Chuan Zhang, Yihong Zhang, Aziza El Harchi, John S Mitcheson, Christopher E Dempsey, G André Ng, Jules C Hancox
Author Information
  1. Dario Melgari: School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.).
  2. Kieran E Brack: Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.).
  3. Chuan Zhang: Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.).
  4. Yihong Zhang: School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.).
  5. Aziza El Harchi: School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.).
  6. John S Mitcheson: Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, Leicester, United Kingdom (J.S.M.).
  7. Christopher E Dempsey: School of Biochemistry, Medical Sciences Building, Bristol, United Kingdom (C.E.D.).
  8. G André Ng: Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.) NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom (A.N.).
  9. Jules C Hancox: School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.).

Abstract

BACKGROUND: Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN-channels. This study investigated the propensity of ivabradine to interact with KCNH2-encoded human Ether-à-go-go-Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia.
METHODS AND RESULTS: Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Ih ERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time-dependent characteristics of Ih ERG block were consistent with preferential gated-state-dependent channel block. Inhibition was partially attenuated by the N588K inactivation-mutant and the S624A pore-helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK-based homology model of hERG, the 2 aromatic rings of the drug could form multiple π-π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea-pig Langendorff-perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve.
CONCLUSIONS: Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits Ih ERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.

Keywords

References

  1. J Med Chem. 2009 Mar 26;52(6):1630-8 [PMID: 19260734]
  2. Circ Res. 1998 Feb 23;82(3):386-95 [PMID: 9486667]
  3. J Cardiovasc Electrophysiol. 2005 Jan;16(1):54-8 [PMID: 15673388]
  4. Adv Cardiol. 2006;43:79-96 [PMID: 16936474]
  5. J Cardiovasc Electrophysiol. 2010 Oct;21(10):1160-9 [PMID: 20455975]
  6. Pharmacol Ther. 2008 Aug;119(2):118-32 [PMID: 18616963]
  7. J Physiol. 2006 Apr 15;572(Pt 2):335-46 [PMID: 16484306]
  8. Cardiovasc Res. 2007 Mar 1;73(4):750-60 [PMID: 17217937]
  9. Cardiovasc Toxicol. 2015 Jan;15(1):104-6 [PMID: 25158669]
  10. Drugs R D. 2003;4(2):83-9 [PMID: 12718562]
  11. Medicine (Baltimore). 2003 Jul;82(4):282-90 [PMID: 12861106]
  12. Biophys J. 1998 Jan;74(1):230-41 [PMID: 9449325]
  13. Clin Ther. 2013 Dec;35(12):1933-45 [PMID: 24332196]
  14. Br J Pharmacol. 1994 May;112(1):37-42 [PMID: 8032660]
  15. Ther Adv Drug Saf. 2011 Feb;2(1):19-28 [PMID: 25083199]
  16. Heart. 2014 Oct;100(19):1506-10 [PMID: 24951486]
  17. Cardiovasc Res. 2009 Oct 1;84(1):72-82 [PMID: 19477966]
  18. J Gen Physiol. 2002 Jul;120(1):1-13 [PMID: 12084770]
  19. Mol Pharmacol. 2000 Feb;57(2):367-74 [PMID: 10648647]
  20. N Engl J Med. 2014 Sep 18;371(12):1091-9 [PMID: 25176136]
  21. Circ Res. 2008 Sep 26;103(7):e81-95 [PMID: 18776039]
  22. J Pharmacol Toxicol Methods. 2009 Sep-Oct;60(2):130-51 [PMID: 19616638]
  23. Biochem Biophys Res Commun. 2011 Feb 11;405(2):222-7 [PMID: 21219869]
  24. J Mol Cell Cardiol. 2014 Sep;74:220-30 [PMID: 24877995]
  25. J Assoc Physicians India. 2014 May;62(5):426-7 [PMID: 25438492]
  26. Eur J Pharmacol. 1997 Nov 19;339(1):43-51 [PMID: 9450615]
  27. Eur J Pharmacol. 2011 Oct 15;668(3):419-26 [PMID: 21821019]
  28. Circ Res. 1997 Nov;81(5):870-8 [PMID: 9351462]
  29. J Gen Physiol. 2000 Mar;115(3):229-40 [PMID: 10694252]
  30. Br J Pharmacol. 1996 Jun;118(4):1051-7 [PMID: 8799581]
  31. Br J Pharmacol. 2008 Nov;155(6):957-66 [PMID: 18724381]
  32. Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H845-52 [PMID: 21257916]
  33. J Mol Cell Cardiol. 2012 Jan;52(1):185-95 [PMID: 21989164]
  34. Biochim Biophys Acta. 2011 Oct;1808(10):2477-87 [PMID: 21777565]
  35. Biochem Biophys Res Commun. 2009 Aug 14;386(1):111-7 [PMID: 19501051]
  36. Br J Pharmacol. 1995 Jul;115(5):787-94 [PMID: 8548178]
  37. PLoS One. 2013;8(1):e53132 [PMID: 23308150]
  38. Br J Pharmacol. 2003 Jul;139(5):887-98 [PMID: 12839862]
  39. Cardiovasc Res. 2003 Apr 1;58(1):32-45 [PMID: 12667944]
  40. Biochem Biophys Res Commun. 2005 Aug 26;334(2):441-9 [PMID: 16011830]
  41. Mol Pharmacol. 2008 Nov;74(5):1443-52 [PMID: 18701618]
  42. Br J Clin Pharmacol. 2006 Feb;61(2):127-37 [PMID: 16433867]
  43. Curr Pharm Des. 2007;13(23):2338-49 [PMID: 17692005]
  44. Nature. 2002 May 30;417(6888):515-22 [PMID: 12037559]
  45. J Biol Chem. 2004 Oct 22;279(43):44690-4 [PMID: 15304481]
  46. J Chem Inf Model. 2014 Feb 24;54(2):601-12 [PMID: 24471705]
  47. Drug Des Devel Ther. 2014;8:689-700 [PMID: 24940047]
  48. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18073-7 [PMID: 25453103]
  49. J Cardiovasc Electrophysiol. 2002 Mar;13(3):292-5 [PMID: 11942602]

Grants

  1. FS/12/52/29629/British Heart Foundation
  2. PG/12/69/29784/British Heart Foundation
  3. FS/11/59/28938/British Heart Foundation
  4. PG/10/96/28661/British Heart Foundation
  5. PG/13/57/30385/British Heart Foundation
  6. PG/11/38/28886/British Heart Foundation
  7. FS/12/2/29300/British Heart Foundation

MeSH Term

Animals
Benzazepines
Bradycardia
ERG1 Potassium Channel
Ether-A-Go-Go Potassium Channels
Guinea Pigs
HEK293 Cells
Heart
Humans
Ivabradine
Male
Patch-Clamp Techniques
Potassium Channel Blockers

Chemicals

Benzazepines
ERG1 Potassium Channel
Ether-A-Go-Go Potassium Channels
KCNH2 protein, human
Potassium Channel Blockers
Ivabradine

Word Cloud

Created with Highcharts 10.0.0hERGivabradinebradycardicrepolarizationHCNagentventricularIhERGchannelIvabradineheartpotassiumchannelsstronglyrecordings2μmol/LblockS6aromaticdrugrestitutionHCN4BACKGROUND:specificusedcoronaryarterydiseasefailureloweringrateinhibitionsinoatrialnodalHCN-channelsstudyinvestigatedpropensityinteractKCNH2-encodedhumanEther-à-go-go-RelatedGeneinfluencesusceptibilitytorsadesdepointesarrhythmiaMETHODSANDRESULTS:PatchclampcurrentIhERGmadeexpressingcells37°CinhibitedIC50071aisoform331coexpressed1a/1bvoltagetime-dependentcharacteristicsconsistentpreferentialgated-state-dependentInhibitionpartiallyattenuatedN588Kinactivation-mutantS624Apore-helixmutantreducedY652AF656AhelixmutantsdockingsimulationsMthK-basedhomologymodelringsformmultipleπ-πinteractionssidechainsY652F656monophasicactionpotentialMAPguinea-pigLangendorff-perfusedheartsdelayedproducedsteepeningMAPD90curveCONCLUSIONS:prolongsalterselectricalpropertiesconcentrationsrelevantuppertherapeuticrangeabsolutetermsdiscriminatechannels:inhibitssimilarpotencyreportednativebindingdeterminantsresemblingobservedfindingsmayimportantimplicationsclinicallyfuturedesignblockadeinhibitorQTinterval

Similar Articles

Cited By