The evolutionary dynamics of major regulators for sexual development among Hymenoptera species.

Matthias Biewer, Francisca Schlesinger, Martin Hasselmann
Author Information
  1. Matthias Biewer: Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany.
  2. Francisca Schlesinger: Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Institute of Bee Research Hohen Neuendorf, Germany.
  3. Martin Hasselmann: Population Genetics of Social Insects, Institute of Genetics, University of Cologne Cologne, Germany ; Livestock Population Genomics Group, Institute of Animal Science, University of Hohenheim Stuttgart, Germany.

Abstract

All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway.

Keywords

References

  1. Proc Biol Sci. 2013 Mar 06;280(1758):20122968 [PMID: 23466984]
  2. Cell. 1989 Mar 24;56(6):997-1010 [PMID: 2493994]
  3. Annu Rev Genet. 2002;36:389-410 [PMID: 12429698]
  4. Nat Commun. 2012 Jun 12;3:895 [PMID: 22692538]
  5. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8590-6 [PMID: 17494754]
  6. Nature. 2010 Dec 16;468(7326):911-20 [PMID: 21164479]
  7. Nature. 2008 Jul 24;454(7203):519-22 [PMID: 18594516]
  8. BMC Evol Biol. 2010 May 13;10:140 [PMID: 20465812]
  9. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4888-93 [PMID: 15051879]
  10. J Evol Biol. 2006 Sep;19(5):1475-85 [PMID: 16910978]
  11. Genetics. 2012 Nov;192(3):1015-26 [PMID: 22942126]
  12. Proc Biol Sci. 2013 Jan 30;280(1755):20122686 [PMID: 23363629]
  13. Science. 2010 Apr 30;328(5978):620-3 [PMID: 20431014]
  14. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  15. Genetics. 2010 Jan;184(1):155-70 [PMID: 19841093]
  16. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13378-83 [PMID: 20624976]
  17. Genetics. 2005 May;170(1):433-46 [PMID: 15781713]
  18. Sex Dev. 2014;8(1-3):20-8 [PMID: 24335049]
  19. EMBO J. 1986 Dec 20;5(13):3607-13 [PMID: 3030733]
  20. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9033-8 [PMID: 15175431]
  21. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  22. Science. 2002 Aug 9;297(5583):1007-13 [PMID: 12114529]
  23. Mol Cell Biol. 1997 May;17(5):2908-19 [PMID: 9111363]
  24. Bioessays. 1995 Jan;17(1):71-7 [PMID: 7702596]
  25. Int J Dev Biol. 2009;53(1):109-20 [PMID: 19123132]
  26. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  27. Genome Biol. 2015 Apr 24;16:76 [PMID: 25908251]
  28. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  29. Mol Biol Evol. 2014 Feb;31(2):272-87 [PMID: 24170493]
  30. PLoS Biol. 2009 Oct;7(10):e1000222 [PMID: 19841734]
  31. Genome Inform. 2009 Oct;23(1):205-11 [PMID: 20180275]
  32. Sex Dev. 2014;8(1-3):74-82 [PMID: 24356125]
  33. Dev Genes Evol. 2007 Oct;217(10):725-31 [PMID: 17846784]
  34. Nat Rev Genet. 2003 Jan;4(1):39-49 [PMID: 12509752]
  35. Nat Rev Genet. 2010 Feb;11(2):97-108 [PMID: 20051986]
  36. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  37. PLoS One. 2013 May 22;8(5):e63618 [PMID: 23717455]
  38. Science. 2002 Jul 12;297(5579):249-52 [PMID: 12114626]
  39. Nature. 1989 Aug 17;340(6234):521-4 [PMID: 2505080]
  40. Genome Res. 2006 Nov;16(11):1339-44 [PMID: 17065604]
  41. Cell. 2011 Mar 18;144(6):970-85 [PMID: 21414487]
  42. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93 [PMID: 16731621]
  43. Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 [PMID: 22096229]
  44. Science. 2007 Jan 12;315(5809):206 [PMID: 17218519]
  45. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  46. Cell. 2003 Aug 22;114(4):419-29 [PMID: 12941271]
  47. PLoS One. 2014 Apr 17;9(4):e91883 [PMID: 24743790]
  48. Annu Rev Genet. 1996;30:637-702 [PMID: 8982468]
  49. Science. 2010 Jan 15;327(5963):343-8 [PMID: 20075255]
  50. J Hered. 2010 Mar-Apr;101 Suppl 1:S118-26 [PMID: 20212006]
  51. Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 [PMID: 21109532]
  52. Development. 2002 Aug;129(15):3715-25 [PMID: 12117820]
  53. Phys Life Rev. 2009 Mar;6(1):23-52 [PMID: 20416849]
  54. Trends Genet. 2012 Jan;28(1):14-21 [PMID: 21982512]
  55. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  56. Genetics. 2007 Nov;177(3):1733-41 [PMID: 17947419]