An effector Peptide family required for Drosophila toll-mediated immunity.

Alexa W Clemmons, Scott A Lindsay, Steven A Wasserman
Author Information
  1. Alexa W Clemmons: Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America.
  2. Scott A Lindsay: Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America.
  3. Steven A Wasserman: Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America.

Abstract

In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.

References

  1. J Leukoc Biol. 2011 May;89(5):649-59 [PMID: 21208897]
  2. Curr Top Microbiol Immunol. 2011;349:25-60 [PMID: 20852987]
  3. Dev Comp Immunol. 2012 Feb;36(2):372-7 [PMID: 21824492]
  4. Annu Rev Immunol. 2012;30:271-94 [PMID: 22224770]
  5. PLoS One. 2012;7(4):e34721 [PMID: 22529929]
  6. J Genet Genomics. 2012 May 20;39(5):209-15 [PMID: 22624882]
  7. J Vis Exp. 2012;(70):e4355 [PMID: 23242373]
  8. J Immunol. 2013 Mar 15;190(6):2818-27 [PMID: 23401590]
  9. Dev Comp Immunol. 2014 Jan;42(1):16-24 [PMID: 23632253]
  10. Dev Comp Immunol. 2014 Jan;42(1):36-41 [PMID: 23796791]
  11. PLoS Pathog. 2014 May;10(5):e1004067 [PMID: 24788090]
  12. Methods. 2014 Jun 15;68(1):116-28 [PMID: 24631888]
  13. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  14. Fly (Austin). 2014;8(2):75-9 [PMID: 25483252]
  15. Dev Cell. 2002 Nov;3(5):711-22 [PMID: 12431377]
  16. Science. 2003 Dec 19;302(5653):2126-30 [PMID: 14684822]
  17. Nat Immunol. 2004 Nov;5(11):1175-80 [PMID: 15448690]
  18. Nature. 1972 May 26;237(5352):232-5 [PMID: 4625204]
  19. Nature. 1981 Jul 16;292(5820):246-8 [PMID: 7019715]
  20. Immunol Rev. 2000 Feb;173:89-97 [PMID: 10719670]
  21. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590-5 [PMID: 11606746]
  22. Dev Cell. 2001 Oct;1(4):503-14 [PMID: 11703941]
  23. Nature. 2001 Nov 22;414(6862):454-7 [PMID: 11719807]
  24. Nature. 2001 Dec 13;414(6865):756-9 [PMID: 11742401]
  25. Nat Immunol. 2002 Jan;3(1):91-7 [PMID: 11743586]
  26. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15119-24 [PMID: 11742098]
  27. Nat Immunol. 2002 Feb;3(2):121-6 [PMID: 11812988]
  28. J Immunol. 2002 Feb 15;168(4):1542-6 [PMID: 11823479]
  29. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2152-7 [PMID: 11854512]
  30. Nature. 2002 Apr 11;416(6881):640-4 [PMID: 11912488]
  31. Nature. 2002 Apr 11;416(6881):644-8 [PMID: 11912489]
  32. Science. 2002 Apr 12;296(5566):359-62 [PMID: 11872802]
  33. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  34. EMBO Rep. 2002 Sep;3(9):852-6 [PMID: 12189180]
  35. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9159-62 [PMID: 2512577]
  36. J Biol Chem. 1993 Jul 15;268(20):14893-7 [PMID: 8325867]
  37. Mol Biol Cell. 1993 Aug;4(8):767-71 [PMID: 8241564]
  38. Cell. 1996 Sep 20;86(6):973-83 [PMID: 8808632]
  39. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465-9 [PMID: 7568155]
  40. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  41. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11342-7 [PMID: 9736738]
  42. Biochimie. 2004 Sep-Oct;86(9-10):607-16 [PMID: 15556270]
  43. Cell Microbiol. 2005 Apr;7(4):461-9 [PMID: 15760446]
  44. Genetics. 2005 Oct;171(2):571-81 [PMID: 15972463]
  45. Genetics. 2006 Jan;172(1):127-43 [PMID: 16291650]
  46. Nat Immunol. 2006 Jul;7(7):715-23 [PMID: 16767093]
  47. Gene. 2006 Sep 1;379:26-32 [PMID: 16824706]
  48. Curr Top Microbiol Immunol. 2006;311:1-16 [PMID: 17048703]
  49. Nat Genet. 2007 Dec;39(12):1461-8 [PMID: 17987029]
  50. Nat Rev Genet. 2008 Mar;9(3):165-78 [PMID: 18227810]
  51. Mol Immunol. 2008 Sep;45(15):3909-16 [PMID: 18657321]
  52. Science. 2008 Nov 21;322(5905):1257-9 [PMID: 19023083]
  53. J Immunol. 2009 Jun 1;182(11):6633-4 [PMID: 19454654]
  54. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9797-802 [PMID: 19482944]
  55. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12442-7 [PMID: 19590012]
  56. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  57. J Innate Immun. 2009;1(4):322-34 [PMID: 20375589]
  58. PLoS Pathog. 2010;6(8):e1001065 [PMID: 20865166]
  59. Science. 2010 Dec 17;330(6011):1682-5 [PMID: 21164016]
  60. J Immunol. 2011 Jan 15;186(2):649-56 [PMID: 21209287]
  61. PLoS One. 2011;6(3):e14743 [PMID: 21390224]
  62. Nature. 2011 Mar 24;471(7339):473-9 [PMID: 21179090]
  63. Nat Methods. 2011 Sep;8(9):737-43 [PMID: 21985007]

Grants

  1. R01 GM050545/NIGMS NIH HHS
  2. T32 GM008666/NIGMS NIH HHS
  3. R01GM050545-16/NIGMS NIH HHS

MeSH Term

Animals
Antimicrobial Cationic Peptides
Candida glabrata
Computational Biology
Drosophila Proteins
Drosophila melanogaster
Enterococcus faecalis
Fusarium
Gene Deletion
Gene Expression Regulation
Host-Pathogen Interactions
Immunity, Innate
Kaplan-Meier Estimate
Male
Peptide Fragments
Peptides
Protein Isoforms
Proteolysis
Proteome
Signal Transduction
Toll-Like Receptors
Transcriptome

Chemicals

Antimicrobial Cationic Peptides
Drosophila Proteins
Peptide Fragments
Peptides
Protein Isoforms
Proteome
Toll-Like Receptors

Word Cloud

Created with Highcharts 10.0.0TollgenessignalingeffectorBomDrosophilarecognitionpathogenpathwayinnateimmunewellfamilytwelve-BomsactivityteninfectionproviderequiredimmunitymelanogasterinvadingactivatesImdtriggeringrobustupregulationeffectorsAlthoughmechanismsnowunderstoodfunctionsimmune-inducedtranscriptomeproteomeremainmuchlesscharacterizedbioinformaticanalysisgenesequencesdefinedBomaninsspecificallyinducedencodesmallsecretedpeptidesunknownbiochemicalUsingtargetedgenomeengineeringdeletedRemarkablyinactivatingdecreasessurvivaluponmicrobialextentspecificityeliminatingfunctionhoweverappearsunaffectedAssayingbacterialloadpost-infectionwild-typemutantfliesevidenceresistancerathertoleranceadditiongeneratingassayingdeletionsmallersubsetfindoverlaptowardparticularpathogensTogetherstudiesdeepenunderstandingToll-mediatednewvivomodelexplorationrepertoirePeptidetoll-mediated

Similar Articles

Cited By