Equilibrium molecular thermodynamics from Kirkwood sampling.

Sandeep Somani, Yuko Okamoto, Andrew J Ballard, David J Wales
Author Information
  1. Sandeep Somani: †University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  2. Yuko Okamoto: ‡Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
  3. Andrew J Ballard: †University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  4. David J Wales: †University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Abstract

We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.

References

  1. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  2. J Comput Chem. 2005 Dec;26(16):1689-700 [PMID: 16200637]
  3. Bioinformatics. 2013 Apr 1;29(7):845-54 [PMID: 23407358]
  4. Proteins. 2006 Nov 15;65(3):712-25 [PMID: 16981200]
  5. Phys Chem Chem Phys. 2005 Dec 7;7(23):3910-6 [PMID: 19810318]
  6. J Chem Theory Comput. 2012 Dec 11;8(12):5159-65 [PMID: 26593205]
  7. Phys Rev Lett. 1988 Dec 5;61(23):2635-2638 [PMID: 10039183]
  8. J Phys Chem B. 2010 Aug 19;114(32):10235-53 [PMID: 20701361]
  9. Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7982-7 [PMID: 18544653]
  10. Phys Rev Lett. 1986 Nov 24;57(21):2607-2609 [PMID: 10033814]
  11. J Chem Theory Comput. 2013 Jan 8;9(1):461-469 [PMID: 23316124]
  12. Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3095-6 [PMID: 21310970]
  13. J Chem Phys. 2009 Apr 7;130(13):134102 [PMID: 19355712]
  14. J Chem Phys. 2007 Feb 21;126(7):074103 [PMID: 17328589]
  15. Phys Rev Lett. 2007 Mar 9;98(10):105701 [PMID: 17358547]
  16. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12224-9 [PMID: 19592512]
  17. J Chem Phys. 2004 Feb 1;120(5):2082-94 [PMID: 15268346]
  18. J Chem Theory Comput. 2013 Feb 12;9(2):909-26 [PMID: 26588735]
  19. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):E1009-18 [PMID: 22025687]
  20. Science. 1999 Aug 27;285(5432):1368-72 [PMID: 10464088]
  21. Phys Rev Lett. 1989 Sep 18;63(12):1195-1198 [PMID: 10040500]
  22. J Chem Phys. 2006 Mar 14;124(10):104105 [PMID: 16542066]
  23. Phys Rev Lett. 1990 Sep 24;65(13):1567-1570 [PMID: 10042303]
  24. Chem Soc Rev. 2014 Jul 21;43(14):5051-66 [PMID: 24709805]
  25. Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):380-8 [PMID: 12037359]
  26. J Chem Phys. 2012 May 21;136(19):194101 [PMID: 22612074]
  27. Biopolymers. 2001;60(2):96-123 [PMID: 11455545]
  28. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):057102 [PMID: 18233794]
  29. J Chem Phys. 2011 Apr 7;134(13):134107 [PMID: 21476743]
  30. J Chem Phys. 2011 Jan 7;134(1):014104 [PMID: 21218994]
  31. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6611-5 [PMID: 3477791]
  32. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2721-6 [PMID: 11970075]
  33. J Chem Phys. 2011 Nov 21;135(19):194110 [PMID: 22112069]

MeSH Term

Algorithms
Dipeptides
Molecular Conformation
Monte Carlo Method
Thermodynamics

Chemicals

Dipeptides
alanylalanine

Word Cloud

Created with Highcharts 10.0.0samplingKirkwoodmethodequilibriumreservoirpresentmethodsmolecularlow-ordercorrelationsmoleculeconformationalspacepotentialenergyvariantMonteCarlousedcorrespondingdifferentgeneratedconformationsdistributiontwobarrierlesssystemsbasedrecentlyproposedJChemPhys2009130134102employsamonginternalcoordinatesrandomnon-MarkovianhighdimensionalgeometricalindependentsurfacefirstbiasedgeneratingtrialmovesUsingdistributionstemperaturesfunctionscangivensetSincesamplesindependentlyideallysuitedmassivelyparalleldistributedcomputingsecondapproachreplicaexchangeconstructexchangesreplicasperformingthermodynamicstatesCouplingenhancesfacilitatingglobaljumpsefficiencydependsoverlaptargetproof-of-conceptresultsmodelnine-atomlinearalaninedipeptideEquilibriumthermodynamics

Similar Articles

Cited By