Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.

Birgit G Bradel-Tretheway, Qian Liu, Jacquelyn A Stone, Samantha McInally, Hector C Aguilar
Author Information
  1. Birgit G Bradel-Tretheway: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
  2. Qian Liu: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
  3. Jacquelyn A Stone: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
  4. Samantha McInally: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
  5. Hector C Aguilar: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA haguilar@vetmed.wsu.edu.

Abstract

Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-Glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-Glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-Glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses.
IMPORTANCE: Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-Glycans in the head quantitatively modulated several protein functions differently between the two viruses.

Associated Data

PDB | 2VSK; 2X9M

References

  1. J Virol. 2013 Mar;87(6):3119-29 [PMID: 23283956]
  2. Future Microbiol. 2013 Apr;8(4):461-74 [PMID: 23534359]
  3. Adv Exp Med Biol. 2013;790:95-127 [PMID: 23884588]
  4. J Mol Biol. 2013 Aug 23;425(16):2867-77 [PMID: 23702291]
  5. PLoS Pathog. 2013;9(10):e1003684 [PMID: 24130486]
  6. PLoS Pathog. 2011 Sep;7(9):e1002200 [PMID: 21909262]
  7. J Virol. 2012 Mar;86(6):3014-26 [PMID: 22238299]
  8. Glycobiology. 2012 Apr;22(4):572-84 [PMID: 22171062]
  9. J Virol. 2012 Jun;86(12):6632-42 [PMID: 22496210]
  10. PLoS Pathog. 2012;8(8):e1002836 [PMID: 22879820]
  11. Curr Top Microbiol Immunol. 2012;359:153-77 [PMID: 22476556]
  12. J Virol. 2012 Nov;86(22):11991-2002 [PMID: 22915812]
  13. PLoS Pathog. 2012;8(10):e1002999 [PMID: 23133379]
  14. PLoS One. 2012;7(11):e48742 [PMID: 23144952]
  15. Virology. 2000 Jun 5;271(2):334-49 [PMID: 10860887]
  16. Virology. 2001 May 10;283(2):332-42 [PMID: 11336558]
  17. Virology. 2003 Aug 1;312(2):395-406 [PMID: 12919744]
  18. J Virol. 1992 Feb;66(2):743-9 [PMID: 1309909]
  19. Annu Rev Immunol. 1997;15:235-70 [PMID: 9143688]
  20. J Immunol. 2005 Jul 1;175(1):413-20 [PMID: 15972675]
  21. Nature. 2005 Jul 21;436(7049):401-5 [PMID: 16007075]
  22. J Gen Virol. 2005 Oct;86(Pt 10):2839-48 [PMID: 16186240]
  23. Virology. 2006 Jan 5;344(1):30-7 [PMID: 16364733]
  24. J Virol. 2006 May;80(10):4878-89 [PMID: 16641279]
  25. PLoS Pathog. 2006 Feb;2(2):e7 [PMID: 16477309]
  26. J Virol. 2006 Aug;80(15):7546-54 [PMID: 16840334]
  27. J Virol. 2007 May;81(9):4520-32 [PMID: 17301148]
  28. Trends Microbiol. 2007 May;15(5):211-8 [PMID: 17398101]
  29. Virology. 2007 Jul 5;363(2):419-29 [PMID: 17328935]
  30. J Virol. 2007 Oct;81(19):10804-14 [PMID: 17652392]
  31. J Infect Dis. 2008 Mar 15;197(6):846-53 [PMID: 18271743]
  32. Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219 [PMID: 18568847]
  33. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9953-8 [PMID: 18632560]
  34. Retrovirology. 2008;5:77 [PMID: 18721458]
  35. J Virol. 2008 Nov;82(22):11398-409 [PMID: 18799571]
  36. J Virol. 2008 Dec;82(23):11628-36 [PMID: 18815311]
  37. J Biol Chem. 2009 Jan 16;284(3):1628-35 [PMID: 19019819]
  38. J Virol. 2010 Mar;84(6):2753-61 [PMID: 20042514]
  39. Antiviral Res. 2013 Oct;100(1):8-13 [PMID: 23838047]
  40. PLoS Pathog. 2013;9(11):e1003770 [PMID: 24278018]
  41. MBio. 2014;5(1):e00862-13 [PMID: 24473128]
  42. Emerg Infect Dis. 2014 Mar;20(3):372-9 [PMID: 24572697]
  43. Curr Opin Virol. 2014 Apr;5:24-33 [PMID: 24530984]
  44. Sci Transl Med. 2014 Jun 25;6(242):242ra82 [PMID: 24964990]
  45. J Virol. 2014 Aug;88(16):9049-59 [PMID: 24899172]
  46. J Virol. 2015 Jan 15;89(2):1242-53 [PMID: 25392218]
  47. J Virol. 2015 Feb;89(3):1838-50 [PMID: 25428863]
  48. Science. 2000 May 26;288(5470):1432-5 [PMID: 10827955]
  49. J Virol. 2010 Jun;84(12):6208-17 [PMID: 20375167]
  50. Expert Rev Mol Med. 2011;13:e6 [PMID: 21345285]
  51. J Biol Chem. 2011 May 20;286(20):17851-60 [PMID: 21460213]

Grants

  1. R01 AI109022/NIAID NIH HHS
  2. T32 GM008336/NIGMS NIH HHS
  3. AI109022/NIAID NIH HHS

MeSH Term

Animals
Cell Line
Hendra Virus
Humans
Mutagenesis, Site-Directed
Mutant Proteins
Nipah Virus
Polysaccharides
Viral Envelope Proteins
Virus Internalization

Chemicals

Mutant Proteins
Polysaccharides
Viral Envelope Proteins
attachment protein G

Word Cloud

Created with Highcharts 10.0.0GHeVfusionviralfunctionsG2N-glycanvirusNiVentryattachmentN-glycanssitesrolesproteinimmuneHendraNipahglycoproteincell-cellfoundG7stalkheaddomainindividualconservedevasiondeadlytwovirusesephrinFmembraneN-glycosylatedeightsixonemutantsshieldingG-FinteractionshighlyglycoproteinslevelsaffectedseveraldifferentlyimportantVirusreportedlypathogenswithinParamyxoviridaefamilybindcellularreceptorsB2and/orB3viaconcertedeffortsresultMembraneessentialhostcellshallmarkdiseasepathobiologyheavilyremainunknowndisruptedpredictedN-glycosylationconservativemutationsAsnGlnactuallyglycosylatedfiveglobularG3testedcombinedmodulationneutralizingantibodiesintracellulartransportsimilartrendseffectsobserveddifferencesfindingsdiscussedcontextcontributionsunderstandingpathogenesisresponsesIMPORTANCE:ViralenvelopepathogenicitymechanismcanachievedparamyxovirusesgovernedcloseinteractionproteinsH/HN/GstudyshowparamyxovirusoligomerizationOverallcloselyrelatedwhereasquantitativelymodulatedNovelFunctionsN-GlycansComparisons

Similar Articles

Cited By (27)