Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner.

Bing Yan, Marina Stantic, Renata Zobalova, Ayenachew Bezawork-Geleta, Michael Stapelberg, Jan Stursa, Katerina Prokopova, Lanfeng Dong, Jiri Neuzil
Author Information
  1. Bing Yan: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. bing.yan@griffithuni.edu.au.
  2. Marina Stantic: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. marina.stantic@ki.se.
  3. Renata Zobalova: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. renata.zob@gmail.con.
  4. Ayenachew Bezawork-Geleta: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. a.bezawork-geleta@griffith.edu.au.
  5. Michael Stapelberg: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. pfm.stapelber@gmail.com.
  6. Jan Stursa: The Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czech Republic. jan.stursa@gmail.com.
  7. Katerina Prokopova: Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic. prokopovak@ibt.cas.cz.
  8. Lanfeng Dong: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. l.dong@griffith.edu.au.
  9. Jiri Neuzil: School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. j.neuzil@griffith.edu.au.

Abstract

BACKGROUND: Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs.
METHODS: The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours.
RESULTS: Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2(high) tumours derived from breast TICs by inducing apoptosis in tumour cells.
CONCLUSIONS: These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells.

References

  1. Curr Pharm Biotechnol. 2009 Feb;10(2):192-6 [PMID: 19199951]
  2. Mol Nutr Food Res. 2009 Jan;53(1):147-53 [PMID: 19123176]
  3. Stem Cells. 2009 May;27(5):1006-20 [PMID: 19415765]
  4. Cancer Lett. 2009 Aug 18;281(1):92-9 [PMID: 19324493]
  5. Nat Rev Drug Discov. 2009 Oct;8(10):806-23 [PMID: 19794444]
  6. Stem Cell Rev. 2011 Mar;7(1):153-60 [PMID: 20306158]
  7. J Biol Chem. 2011 Feb 4;286(5):3717-28 [PMID: 21059645]
  8. Free Radic Biol Med. 2011 Jun 1;50(11):1546-55 [PMID: 21402148]
  9. Int J Cancer. 2011 Aug 15;129(4):820-31 [PMID: 21520032]
  10. Antioxid Redox Signal. 2011 Dec 15;15(12):3021-38 [PMID: 21395490]
  11. Int J Biochem Cell Biol. 2012 Apr;44(4):573-7 [PMID: 22249027]
  12. Mitochondrion. 2013 May;13(3):199-208 [PMID: 22846431]
  13. Biochim Biophys Acta. 2013 May;1827(5):552-64 [PMID: 23142170]
  14. CA Cancer J Clin. 2014 Jan-Feb;64(1):52-62 [PMID: 24114568]
  15. Free Radic Biol Med. 2014 Feb;67:41-50 [PMID: 24145120]
  16. CA Cancer J Clin. 2014 Jul-Aug;64(4):252-71 [PMID: 24890451]
  17. Br J Cancer. 2001 Jan 5;84(1):87-9 [PMID: 11139318]
  18. Nature. 2001 Nov 1;414(6859):105-11 [PMID: 11689955]
  19. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 [PMID: 12629218]
  20. Cancer Res. 2003 Sep 15;63(18):5821-8 [PMID: 14522905]
  21. Cytometry A. 2004 Feb;57(2):86-93 [PMID: 14750129]
  22. Science. 1992 Mar 27;255(5052):1707-10 [PMID: 1553558]
  23. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10578-82 [PMID: 1359541]
  24. J Bioenerg Biomembr. 1995 Dec;27(6):583-96 [PMID: 8746845]
  25. J Neurosci. 1996 Dec 1;16(23):7599-609 [PMID: 8922416]
  26. Nat Med. 1997 Jul;3(7):730-7 [PMID: 9212098]
  27. Blood. 2005 Jun 1;105(11):4163-9 [PMID: 15687234]
  28. Cell. 2005 Jun 17;121(6):823-35 [PMID: 15960971]
  29. Cell. 2005 Jul 1;121(7):1043-57 [PMID: 15989954]
  30. Cancer Res. 2005 Jul 1;65(13):5506-11 [PMID: 15994920]
  31. Nature. 2006 Jan 5;439(7072):84-8 [PMID: 16397499]
  32. Cancer Res. 2006 Feb 15;66(4):1883-90; discussion 1895-6 [PMID: 16488983]
  33. Nature. 2007 Jan 4;445(7123):111-5 [PMID: 17122771]
  34. Expert Opin Ther Targets. 2007 Jul;11(7):915-27 [PMID: 17614760]
  35. Int J Cancer. 2008 Jan 15;122(2):298-304 [PMID: 17935134]
  36. Nat Clin Pract Endocrinol Metab. 2008 Feb;4(2):111-5 [PMID: 18212813]
  37. Breast Cancer Res. 2008;10(1):R10 [PMID: 18241344]
  38. J Clin Oncol. 2008 Jun 10;26(17):2795-9 [PMID: 18539956]
  39. J Clin Oncol. 2008 Jun 10;26(17):2813-20 [PMID: 18539959]
  40. Oncogene. 2008 Jul 17;27(31):4324-35 [PMID: 18372923]
  41. Breast Cancer Res Treat. 2008 Oct;111(3):419-27 [PMID: 17965935]
  42. Cancer Res. 2008 Oct 1;68(19):7711-7 [PMID: 18829523]
  43. Cell Stem Cell. 2007 Nov;1(5):555-67 [PMID: 18371393]
  44. Clin Cancer Res. 2009 Mar 1;15(5):1593-600 [PMID: 19223492]

MeSH Term

Animals
Antineoplastic Agents
Apoptosis
Breast Neoplasms
Cell Line, Tumor
Cell Survival
Disease Models, Animal
Drug Resistance, Neoplasm
Electron Transport Complex II
Female
Humans
MCF-7 Cells
Mice
Mice, Transgenic
Mitochondria
Neoplastic Stem Cells
Spheroids, Cellular
Tocopherols
Tumor Burden
Tumor Cells, Cultured
Xenograft Model Antitumor Assays

Chemicals

Antineoplastic Agents
Electron Transport Complex II
Tocopherols

Word Cloud

Created with Highcharts 10.0.0cellsTICsbreastMitoVEScancertumour-initiatingtargetmodelNeuTLinitiationresistancedrugsapoptosismitochondriainvestigatedtargetedvitaminEsuccinatevivoefficacyestablishedMCF7celltumoursyngeneictumoursderivedmitochondrialmammospherescomplexefficientlyBACKGROUND:AccumulatingevidencesuggestsinvolvesplayrolemetastasistherapeuticrelapsediseaseEmergingbecomingfocuscontemporaryresearchMitocansgroupcompoundsinducedestabilisingshowingpotentialkillingprojectmitochondriallyrecentlydevelopedmitocanvitroMETHODS:mammosphereculturingmurinehumanspheresverifiedstemmarkerexpressioncapacitychemotherapeuticCellsusceptibilityassesseddeathpathwaystudiedgraftingformRESULTS:MammospheresenrichedlevelstemnessspherefeaturedalteredfunctionSphereculturesresistantseveralanti-canceragentssusceptibleKillingsuppressedIImolecularknockedImportantlyinhibitedprogressionHER2highinducingCONCLUSIONS:resultsdemonstrateusingplausiblestudyingkillMitochondriallykillsII-dependentmanner

Similar Articles

Cited By (28)