Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location.

Heath G Jones, Andrew D Brown, Kanthaiah Koka, Jennifer L Thornton, Daniel J Tollin
Author Information
  1. Heath G Jones: Neuroscience Training Program, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
  2. Andrew D Brown: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
  3. Kanthaiah Koka: Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
  4. Jennifer L Thornton: Neuroscience Training Program, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
  5. Daniel J Tollin: Neuroscience Training Program, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado daniel.tollin@ucdenver.edu.

Abstract

The century-old duplex theory of sound localization posits that low- and high-frequency sounds are localized with two different acoustical cues, interaural time and level differences (ITDs and ILDs), respectively. While behavioral studies in humans and behavioral and neurophysiological studies in a variety of animal models have largely supported the duplex theory, behavioral sensitivity to ILD is curiously invariant across the audible spectrum. Here we demonstrate that auditory midbrain neurons in the chinchilla (Chinchilla lanigera) also encode ILDs in a frequency-invariant manner, efficiently representing the full range of acoustical ILDs experienced as a joint function of sound source frequency, azimuth, and distance. We further show, using Fisher information, that nominal "low-frequency" and "high-frequency" ILD-sensitive neural populations can discriminate ILD with similar acuity, yielding neural ILD discrimination thresholds for near-midline sources comparable to behavioral discrimination thresholds estimated for chinchillas. These findings thus suggest a revision to the duplex theory and reinforce ecological and efficiency principles that hold that neural systems have evolved to encode the spectrum of biologically relevant sensory signals to which they are naturally exposed.

Keywords

References

  1. J Neurosci. 2005 Aug 17;25(33):7575-85 [PMID: 16107645]
  2. J Neurosci. 2003 Jan 15;23(2):716-24 [PMID: 12533632]
  3. J Acoust Soc Am. 1999 Feb;105(2 Pt 1):838-49 [PMID: 9972569]
  4. Exp Brain Res. 1983;52(3):385-99 [PMID: 6653700]
  5. Psychol Rev. 1954 May;61(3):183-93 [PMID: 13167245]
  6. Hear Res. 2011 Feb;272(1-2):135-47 [PMID: 20971180]
  7. Hear Res. 2007 Jan;223(1-2):105-13 [PMID: 17141992]
  8. J Acoust Soc Am. 2011 Jul;130(1):EL38-43 [PMID: 21786866]
  9. J Neurophysiol. 2008 May;99(5):2390-407 [PMID: 18287556]
  10. J Assoc Res Otolaryngol. 2010 Dec;11(4):541-57 [PMID: 20526728]
  11. J Neurophysiol. 2010 Feb;103(2):875-86 [PMID: 20018829]
  12. J Acoust Soc Am. 2001 Aug;110(2):1074-88 [PMID: 11519576]
  13. J Neurosci. 2005 Nov 16;25(46):10648-57 [PMID: 16291937]
  14. J Acoust Soc Am. 1985 Aug;78(2):524-33 [PMID: 4031251]
  15. Otolaryngol Head Neck Surg. 2010 Apr;142(4):615-7 [PMID: 20304288]
  16. J Acoust Soc Am. 1976 Dec;60(6):1339-46 [PMID: 1010886]
  17. Hear Res. 2010 May;263(1-2):128-37 [PMID: 19720125]
  18. J Acoust Soc Am. 1974 Mar;55(3):649-52 [PMID: 4819866]
  19. J Acoust Soc Am. 1984 Jul;76(1):71-6 [PMID: 6747114]
  20. J Assoc Res Otolaryngol. 2011 Apr;12(2):127-40 [PMID: 20957506]
  21. J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1037-45 [PMID: 12243152]
  22. J Neurophysiol. 2004 Jan;91(1):101-17 [PMID: 14507982]
  23. J Neurophysiol. 2004 Jan;91(1):118-35 [PMID: 14523080]
  24. J Acoust Soc Am. 2002 Apr;111(4):1832-46 [PMID: 12002867]
  25. J Neurophysiol. 2006 Sep;96(3):1425-40 [PMID: 16571733]
  26. J Neurosci. 2008 May 7;28(19):4848-60 [PMID: 18463238]
  27. Exp Neurol. 1972 Jul;36(1):118-26 [PMID: 5046877]
  28. J Acoust Soc Am. 2012 Jul;132(1):9-27 [PMID: 22779451]
  29. J Neurophysiol. 1983 Oct;50(4):981-99 [PMID: 6631473]
  30. J Acoust Soc Am. 1998 Jun;103(6):3527-39 [PMID: 9637036]
  31. J Neurophysiol. 1993 Feb;69(2):449-61 [PMID: 8459277]
  32. Brain Res. 1983 Jun 13;269(1):69-82 [PMID: 6871703]
  33. J Neurophysiol. 1979 Nov;42(6):1626-39 [PMID: 501392]
  34. J Acoust Soc Am. 2005 Aug;118(2):872-86 [PMID: 16158644]
  35. J Neurosci. 2006 Apr 12;26(15):3889-98 [PMID: 16611804]
  36. J Acoust Soc Am. 1995 Aug;98(2 Pt 1):785-97 [PMID: 7642817]
  37. J Neurosci. 2010 Jun 9;30(23):7826-37 [PMID: 20534831]
  38. Hear Res. 2012 Jun;288(1-2):47-57 [PMID: 22343068]
  39. PLoS One. 2014 Oct 06;9(10):e108968 [PMID: 25285658]
  40. J Neurophysiol. 2006 Jun;95(6):3742-55 [PMID: 16510777]
  41. Physiol Rev. 2010 Jul;90(3):983-1012 [PMID: 20664077]
  42. Neuroscientist. 2003 Apr;9(2):127-43 [PMID: 12708617]
  43. J Acoust Soc Am. 1988 May;83(5):1846-51 [PMID: 3403800]
  44. J Neurophysiol. 2014 Sep 15;112(6):1340-55 [PMID: 24944219]
  45. J Neurophysiol. 1990 Mar;63(3):570-91 [PMID: 2329362]
  46. J Neurophysiol. 1987 Apr;57(4):1130-47 [PMID: 3585457]
  47. J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68 [PMID: 10530020]
  48. Eur J Neurosci. 2014 Jan;39(2):197-206 [PMID: 24256073]
  49. Hear Res. 1995 Jun;86(1-2):1-14 [PMID: 8567406]
  50. J Neurophysiol. 1991 Mar;65(3):598-605 [PMID: 2051197]
  51. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3317-26 [PMID: 14714812]
  52. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10749-53 [PMID: 8248166]
  53. J Acoust Soc Am. 2002 May;111(5 Pt 1):2219-36 [PMID: 12051442]
  54. J Acoust Soc Am. 1998 Jun;103(6):3509-26 [PMID: 9637035]
  55. Hear Res. 1994 Nov;80(2):247-57 [PMID: 7896583]
  56. Brain Res. 1976 Feb 20;103(2):313-38 [PMID: 1252921]
  57. Hear Res. 2011 Feb;272(1-2):30-41 [PMID: 21073935]
  58. J Neurosci. 1988 Feb;8(2):682-700 [PMID: 3339433]

Grants

  1. T32 HD041697/NICHD NIH HHS
  2. R01-DC-011555/NIDCD NIH HHS
  3. F32-DC-013927/NIDCD NIH HHS
  4. R01 DC011555/NIDCD NIH HHS
  5. T32-HD-041697/NICHD NIH HHS
  6. F32 DC013927/NIDCD NIH HHS
  7. F31-DC-011198/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Acoustics
Action Potentials
Animals
Auditory Pathways
Chinchilla
Cues
Female
Inferior Colliculi
Information Theory
Male
Microelectrodes
Neurons
Sound Localization

Word Cloud

Created with Highcharts 10.0.0soundbehavioralneuralduplextheoryILDsILDlocalizationacousticalinteraurallevelstudiesspectrumneuronsencodefrequency-invariantsourcediscriminationthresholdscentury-oldpositslow-high-frequencysoundslocalizedtwodifferentcuestimedifferencesITDsrespectivelyhumansneurophysiologicalvarietyanimalmodelslargelysupportedsensitivitycuriouslyinvariantacrossaudibledemonstrateauditorymidbrainchinchillaChinchillalanigeraalsomannerefficientlyrepresentingfullrangeexperiencedjointfunctionfrequencyazimuthdistanceshowusingFisherinformationnominal"low-frequency""high-frequency"ILD-sensitivepopulationscandiscriminatesimilaracuityyieldingnear-midlinesourcescomparableestimatedchinchillasfindingsthussuggestrevisionreinforceecologicalefficiencyprinciplesholdsystemsevolvedbiologicallyrelevantsensorysignalsnaturallyexposedSoundcodingfrequency-dependentcuelocationinferiorcolliculusdifferencelow-frequency

Similar Articles

Cited By