RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition.

Henrietta Venter, Rumana Mowla, Thelma Ohene-Agyei, Shutao Ma
Author Information
  1. Henrietta Venter: School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia.
  2. Rumana Mowla: School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia.
  3. Thelma Ohene-Agyei: Department of Pharmacology, University of Cambridge Cambridge, UK.
  4. Shutao Ma: Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China.

Abstract

Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.

Keywords

References

  1. J Antimicrob Chemother. 2014 Mar;69(3):673-81 [PMID: 24176982]
  2. J Antimicrob Chemother. 2005 Jul;56(1):20-51 [PMID: 15914491]
  3. Int J Antimicrob Agents. 2009 Oct;34(4):343-6 [PMID: 19615866]
  4. Antimicrob Agents Chemother. 2004 Mar;48(3):1043-6 [PMID: 14982806]
  5. Nat Rev Drug Discov. 2007 Jan;6(1):56-65 [PMID: 17159924]
  6. J Bacteriol. 2005 Nov;187(21):7417-24 [PMID: 16237025]
  7. Curr Drug Targets. 2008 Sep;9(9):729-49 [PMID: 18781920]
  8. Front Microbiol. 2011 Apr 05;2:65 [PMID: 21747788]
  9. Microbiology. 2011 Feb;157(Pt 2):566-71 [PMID: 21071494]
  10. J Antimicrob Chemother. 2011 Sep;66(9):2057-60 [PMID: 21700628]
  11. Int J Antimicrob Agents. 2011 Feb;37(2):145-51 [PMID: 21194895]
  12. J Antimicrob Chemother. 2012 Oct;67(10):2409-17 [PMID: 22733653]
  13. Biochem Pharmacol. 2006 Mar 30;71(7):910-8 [PMID: 16427026]
  14. Biosci Biotechnol Biochem. 2010;74(11):2237-41 [PMID: 21071837]
  15. Biochem J. 2010 Sep 1;430(2):355-64 [PMID: 20583998]
  16. Lett Appl Microbiol. 2008 Oct;47(4):298-302 [PMID: 19241523]
  17. J Bacteriol. 2013 Jan;195(1):135-44 [PMID: 23104810]
  18. Curr Opin Struct Biol. 2008 Aug;18(4):459-65 [PMID: 18644451]
  19. Int J Antimicrob Agents. 2006 Jun;27(6):565-9 [PMID: 16707249]
  20. Biochim Biophys Acta. 2009 May;1794(5):769-81 [PMID: 19026770]
  21. Biomed Pharmacother. 2014 Oct;68(8):1065-9 [PMID: 25458794]
  22. Biochem J. 2003 Dec 15;376(Pt 3):801-5 [PMID: 12959639]
  23. Ann Clin Microbiol Antimicrob. 2013 Aug 28;12:22 [PMID: 23984642]
  24. J Antimicrob Chemother. 2010 Jun;65(6):1215-23 [PMID: 20304975]
  25. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14832-7 [PMID: 18812515]
  26. Nature. 2003 Dec 18;426(6968):866-70 [PMID: 14685244]
  27. Chem Biol Drug Des. 2014 Apr;83(4):482-92 [PMID: 24267788]
  28. Microbiologyopen. 2014 Dec;3(6):885-96 [PMID: 25224951]
  29. Annu Rev Microbiol. 1996;50:753-89 [PMID: 8905098]
  30. Nat Struct Mol Biol. 2008 Feb;15(2):199-205 [PMID: 18223659]
  31. Annu Rev Biophys. 2014;43:93-117 [PMID: 24702006]
  32. Biochim Biophys Acta. 2009 May;1794(5):817-25 [PMID: 19289182]
  33. J Bacteriol. 2008 Dec;190(24):8225-9 [PMID: 18849422]
  34. Chem Biol. 2011 Apr 22;18(4):454-63 [PMID: 21513882]
  35. J Antibiot (Tokyo). 2011 Jun;64(6):413-25 [PMID: 21587262]
  36. Microbiology. 2013 Oct;159(Pt 10):2058-73 [PMID: 23924707]
  37. Nature. 2014 May 22;509(7501):512-5 [PMID: 24747401]
  38. J Antimicrob Chemother. 2006 Feb;57(2):339-43 [PMID: 16354747]
  39. J Bacteriol. 2007 Nov;189(21):7600-9 [PMID: 17720796]
  40. Nat Rev Microbiol. 2011 Nov 02;9(12 ):894-6 [PMID: 22048738]
  41. J Bacteriol. 1997 Oct;179(19):6122-6 [PMID: 9324261]
  42. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  43. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5687-92 [PMID: 22451937]
  44. Nature. 2011 Nov 27;480(7378):565-9 [PMID: 22121023]
  45. Nat Rev Microbiol. 2006 Aug;4(8):629-36 [PMID: 16845433]
  46. J Bacteriol. 2008 Jan;190(2):691-8 [PMID: 18024521]
  47. Front Microbiol. 2011 Sep 16;2:189 [PMID: 21954395]
  48. Mol Microbiol. 2003 Jun;48(6):1609-19 [PMID: 12791142]
  49. Annu Rev Microbiol. 2002;56:743-68 [PMID: 12142492]
  50. Clin Microbiol Rev. 2006 Apr;19(2):382-402 [PMID: 16614254]
  51. Antimicrob Agents Chemother. 2012 Nov;56(11):6037-40 [PMID: 22948865]
  52. Am J Infect Control. 2003 Apr;31(2):124-7 [PMID: 12665747]
  53. Open Microbiol J. 2013;7:83-6 [PMID: 23560030]
  54. PLoS One. 2013;8(2):e56858 [PMID: 23441219]
  55. Curr Opin Biotechnol. 2012 Jun;23(3):415-21 [PMID: 22155018]
  56. Farmaco. 2001 Jan-Feb;56(1-2):81-5 [PMID: 11347972]
  57. Trends Biochem Sci. 2014 Jan;39(1):8-16 [PMID: 24316304]
  58. J Clin Microbiol. 2005 Jan;43(1):140-3 [PMID: 15634962]
  59. J Antimicrob Chemother. 2011 Apr;66(4):769-77 [PMID: 21393180]
  60. Antimicrob Agents Chemother. 2002 Oct;46(10):3133-41 [PMID: 12234835]
  61. Biochim Biophys Acta. 2009 May;1794(5):782-93 [PMID: 19166984]
  62. Clin Microbiol Infect. 2007 Feb;13(2):183-9 [PMID: 17328731]
  63. Clin Microbiol Infect. 2004 Jan;10(1):12-26 [PMID: 14706082]
  64. SAR QSAR Environ Res. 2014;25(7):551-63 [PMID: 24905472]
  65. Antimicrob Agents Chemother. 2014 Aug;58(8):4767-72 [PMID: 24914123]
  66. Science. 2011 Sep 23;333(6050):1764-7 [PMID: 21940899]
  67. FEMS Microbiol Lett. 2012 Aug;333(1):20-7 [PMID: 22568688]
  68. Antimicrob Agents Chemother. 2014;58(2):722-33 [PMID: 24247144]
  69. Nature. 2013 Aug 1;500(7460):102-6 [PMID: 23812586]
  70. Biochimie. 2005 Dec;87(12):1137-47 [PMID: 15951096]
  71. PLoS One. 2012;7(2):e32684 [PMID: 22393435]
  72. Antimicrob Agents Chemother. 2009 Jan;53(1):329-30 [PMID: 18936189]
  73. Comput Struct Biotechnol J. 2013 Mar 03;5:e201302008 [PMID: 24688701]
  74. Antimicrob Agents Chemother. 2009 May;53(5):2209-11 [PMID: 19258278]
  75. J Exp Med. 2002 Jul 1;196(1):109-18 [PMID: 12093875]
  76. In Vivo. 2010 Sep-Oct;24(5):751-4 [PMID: 20952744]
  77. Science. 2006 Sep 1;313(5791):1295-8 [PMID: 16946072]
  78. Antimicrob Agents Chemother. 2001 Jan;45(1):105-16 [PMID: 11120952]
  79. Nature. 2006 Sep 14;443(7108):173-9 [PMID: 16915237]
  80. Antimicrob Agents Chemother. 2010 Sep;54(9):3770-5 [PMID: 20606071]
  81. FEMS Microbiol Rev. 2009 Mar;33(2):430-49 [PMID: 19207745]
  82. Microb Drug Resist. 2012 Oct;18(5):492-501 [PMID: 22741576]
  83. Mol Microbiol. 2002 Jun;44(5):1131-9 [PMID: 12068802]
  84. Proteins. 2015 Jan;83(1):46-65 [PMID: 24957790]
  85. Adv Enzymol Relat Areas Mol Biol. 2011;77:1-60 [PMID: 21692366]
  86. PLoS One. 2014 Jul 15;9(7):e101840 [PMID: 25025665]
  87. Biol Chem. 2009 Aug;390(8):693-9 [PMID: 19453279]
  88. FEMS Microbiol Rev. 2012 Mar;36(2):340-63 [PMID: 21707670]
  89. J Clin Diagn Res. 2014 Oct;8(10):DC04-7 [PMID: 25478340]
  90. Curr Top Med Chem. 2013;13(24):3079-100 [PMID: 24200360]
  91. Nat Protoc. 2007;2(4):770-7 [PMID: 17446876]
  92. Antimicrob Agents Chemother. 2005 Feb;49(2):781-2 [PMID: 15673767]
  93. Appl Environ Microbiol. 1997 Jun;63(6):2421-31 [PMID: 9172364]
  94. Microbiologyopen. 2015 Feb;4(1):121-35 [PMID: 25450797]
  95. Mol Microbiol. 1999 Aug;33(4):839-45 [PMID: 10447892]
  96. J Antimicrob Chemother. 2015 Feb;70(2):424-31 [PMID: 25288678]
  97. Microbiology. 2014 Nov;160(Pt 11):2366-73 [PMID: 25122880]
  98. Antimicrob Agents Chemother. 2014 Oct;58(10):6224-34 [PMID: 25114133]
  99. Antimicrob Agents Chemother. 2006 Jan;50(1):38-42 [PMID: 16377664]
  100. J Med Chem. 2005 Feb 10;48(3):832-8 [PMID: 15689167]
  101. Front Pharmacol. 2014 Jan 03;4:168 [PMID: 24427138]
  102. Recent Pat Antiinfect Drug Discov. 2012 Apr;7(1):73-89 [PMID: 22353004]

Word Cloud

Created with Highcharts 10.0.0effluxresistancedrugpumppumpsmultidrugalsocompoundsinhibitionwillGram-negativeantibioticscansubstratereversedevelopmentpathogensstructurefunctionalAcrAB-TolCmechanismEPIsDrugproteincomplexesconferbacteriatransportingwidespectrumstructurallydiverseMoreoverorganismsacquirepresenceactiverangelimitedincludestoxinsdyesdetergentslipidsmoleculesinvolvedquorumsensinghenceassociatedvirulencebiofilmformationInhibitorsthereforeattractivepreventclinicallyrelevantbacterialRecentsuccessesdeterminationanalysisAcrBMexBcomponentsMexAB-OprMsystemswellfullyassembledtripartedcomplexsignificantlycontributedunderstandingtransportoptionsdatacombinedwell-developedmethodologiesmeasuringallowrationaldesignsubsequentexperimentalverificationpotentialinhibitorsreviewexploreavailablebiochemicalstructuralinformationtranslateddiscoverynewcurrentliteratureanalyzedreasonsyetprogressedclinicaluseexploredRND-typebacteria:molecularantimicrobialinhibitorpathogen

Similar Articles

Cited By (110)