Automated acquisition and analysis of airway surface liquid height by confocal microscopy.

Hyun-Chul Choi, Christine Seul Ki Kim, Robert Tarran
Author Information
  1. Hyun-Chul Choi: Department of Electronic Engineering, Yeungnam University, Kyungsan, Kyungbuk, South Korea; and.
  2. Christine Seul Ki Kim: Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.
  3. Robert Tarran: Cystic Fibrosis Center/Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina tarran@med.unc.edu.

Abstract

The airway surface liquid (ASL) is a thin-liquid layer that lines the luminal side of airway epithelia. ASL contains many molecules that are involved in primary innate defense in the lung. Measurement of ASL height on primary airway cultures by confocal microscopy is a powerful tool that has enabled researchers to study ASL physiology and pharmacology. Previously, ASL image acquisition and analysis were performed manually. However, this process is time and labor intensive. To increase the throughput, we have developed an automatic ASL measurement technique that combines a fully automated confocal microscope with novel automatic image analysis software that was written with image processing techniques derived from the computer science field. We were able to acquire XZ ASL images at the rate of ∼ 1 image/s in a reproducible fashion. Our automatic analysis software was able to analyze images at the rate of ∼ 32 ms/image. As proofs of concept, we generated a time course for ASL absorption and a dose response in the presence of SPLUNC1, a known epithelial sodium channel inhibitor, on human bronchial epithelial cultures. Using this approach, we determined the IC50 for SPLUNC1 to be 6.53 μM. Furthermore, our technique successfully detected a difference in ASL height between normal and cystic fibrosis (CF) human bronchial epithelial cultures and detected changes in ATP-stimulated Cl(-)/ASL secretion. We conclude that our automatic ASL measurement technique can be applied for repeated ASL height measurements with high accuracy and consistency and increased throughput.

Keywords

References

  1. J Clin Invest. 2001 Feb;107(3):317-24 [PMID: 11160155]
  2. Curr Opin Pharmacol. 2009 Jun;9(3):262-7 [PMID: 19285919]
  3. Mol Cell. 2001 Jul;8(1):149-58 [PMID: 11511368]
  4. Methods Mol Med. 2002;70:479-92 [PMID: 11917544]
  5. J Anat. 2002 Oct;201(4):313-8 [PMID: 12430955]
  6. Am J Physiol Cell Physiol. 2003 Jan;284(1):C2-15 [PMID: 12475759]
  7. Am J Physiol. 1998 Mar;274(3 Pt 1):L388-95 [PMID: 9530174]
  8. J Clin Invest. 1998 Sep 15;102(6):1125-31 [PMID: 9739046]
  9. Cell. 1998 Dec 23;95(7):1005-15 [PMID: 9875854]
  10. Physiol Rev. 1999 Jan;79(1 Suppl):S215-55 [PMID: 9922383]
  11. J Physiol. 1999 May 1;516 ( Pt 3):631-8 [PMID: 10200413]
  12. Annu Rev Physiol. 2006;68:543-61 [PMID: 16460283]
  13. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11412-7 [PMID: 19541605]
  14. PLoS Biol. 2009 Jul;7(7):e1000155 [PMID: 19621064]
  15. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825-30 [PMID: 19846789]
  16. Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1131-40 [PMID: 19820035]
  17. J Gen Physiol. 2010 Sep;136(3):353-62 [PMID: 20713545]
  18. Methods Mol Biol. 2011;742:77-92 [PMID: 21547727]
  19. Subcell Biochem. 2011;55:95-138 [PMID: 21560046]
  20. J Cyst Fibros. 2011 Jun;10 Suppl 2:S172-82 [PMID: 21658636]
  21. Am J Respir Cell Mol Biol. 2011 Sep;45(3):592-9 [PMID: 21239602]
  22. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843-8 [PMID: 21976485]
  23. Int J Biochem Cell Biol. 2012 Aug;44(8):1232-5 [PMID: 22542896]
  24. Methods Mol Biol. 2013;945:109-21 [PMID: 23097104]
  25. Cell Tissue Res. 2013 Feb;351(2):309-23 [PMID: 22729487]
  26. PLoS One. 2013;8(1):e54473 [PMID: 23372732]
  27. Curr Mol Pharmacol. 2013 Mar;6(1):3-12 [PMID: 23547930]
  28. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15973-8 [PMID: 24043776]
  29. Thorax. 2013 Dec;68(12):1157-62 [PMID: 23704228]
  30. Am J Physiol Lung Cell Mol Physiol. 2013 Dec;305(12):L990-L1001 [PMID: 24124190]
  31. Am J Physiol Lung Cell Mol Physiol. 2015 Jan 1;308(1):L22-32 [PMID: 25361567]
  32. J Gen Physiol. 2006 May;127(5):591-604 [PMID: 16636206]
  33. Annu Rev Med. 2007;58:157-70 [PMID: 17217330]
  34. Respir Physiol Neurobiol. 2007 Dec 15;159(3):256-70 [PMID: 17692578]
  35. J Gen Physiol. 2001 Aug;118(2):223-36 [PMID: 11479349]

Grants

  1. P50HL120100/NHLBI NIH HHS
  2. P30DK065988/NIDDK NIH HHS
  3. R01 HL108927/NHLBI NIH HHS
  4. P50 HL084934/NHLBI NIH HHS
  5. R01HL108927/NHLBI NIH HHS
  6. P50 HL120100/NHLBI NIH HHS
  7. P30 DK065988/NIDDK NIH HHS

MeSH Term

Adenosine Triphosphate
Bronchi
Cells, Cultured
Cystic Fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator
Epithelial Cells
Glycoproteins
Humans
Ion Transport
Microscopy, Confocal
Phosphoproteins
Respiratory Mucosa
Sodium

Chemicals

BPIFA1 protein, human
Glycoproteins
Phosphoproteins
Cystic Fibrosis Transmembrane Conductance Regulator
Adenosine Triphosphate
Sodium

Word Cloud

Created with Highcharts 10.0.0ASLairwayheightanalysisautomaticsurfaceliquidculturesconfocalmicroscopyimagetechniqueepithelialprimaryacquisitiontimethroughputmeasurementsoftwareableimagesrateSPLUNC1humanbronchialdetectedcysticfibrosisthin-liquidlayerlinesluminalsideepitheliacontainsmanymoleculesinvolvedinnatedefenselungMeasurementpowerfultoolenabledresearchersstudyphysiologypharmacologyPreviouslyperformedmanuallyHoweverprocesslaborintensiveincreasedevelopedcombinesfullyautomatedmicroscopenovelwrittenprocessingtechniquesderivedcomputersciencefieldacquireXZ1image/sreproduciblefashionanalyze32ms/imageproofsconceptgeneratedcourseabsorptiondoseresponsepresenceknownsodiumchannelinhibitorUsingapproachdeterminedIC50653μMFurthermoresuccessfullydifferencenormalCFchangesATP-stimulatedCl-/ASLsecretionconcludecanappliedrepeatedmeasurementshighaccuracyconsistencyincreasedAutomatedCFTRCOPDENaCfluorescent

Similar Articles

Cited By