βA3/A1-crystallin and persistent fetal vasculature (PFV) disease of the eye.

J Samuel Zigler, Mallika Valapala, Peng Shang, Stacey Hose, Morton F Goldberg, Debasish Sinha
Author Information
  1. J Samuel Zigler: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  2. Mallika Valapala: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  3. Peng Shang: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology of Shanghai Tenth Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.
  4. Stacey Hose: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  5. Morton F Goldberg: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  6. Debasish Sinha: Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address: Debasish@jhmi.edu.

Abstract

BACKGROUND: Persistent fetal vasculature (PFV) is a human disease in which the fetal vasculature of the eye fails to regress normally. The fetal, or hyaloid, vasculature nourishes the lens and retina during ocular development, subsequently regressing after formation of the retinal vessels. PFV causes serious congenital pathologies and is responsible for as much as 5% of blindness in the United States.
SCOPE OF REVIEW: The causes of PFV are poorly understood, however there are a number of animal models in which aspects of the disease are present. One such model results from mutation or elimination of the gene (Cryba1) encoding βA3/A1-crystallin. In this review we focus on the possible mechanisms whereby loss of functional βA3/A1-crystallin might lead to PFV.
MAJOR CONCLUSIONS: Cryba1 is abundantly expressed in the lens, but is also expressed in certain other ocular cells, including astrocytes. In animal models lacking βA3/A1-crystallin, astrocyte numbers are increased and they migrate abnormally from the retina to ensheath the persistent hyaloid artery. Evidence is presented that the absence of functional βA3/A1-crystallin causes failure of the normal acidification of endolysosomal compartments in the astrocytes, leading to impairment of certain critical signaling pathways, including mTOR and Notch/STAT3.
GENERAL SIGNIFICANCE: The findings suggest that impaired endolysosomal signaling in ocular astrocytes can cause PFV disease, by adversely affecting the vascular remodeling processes essential to ocular development, including regression of the fetal vasculature. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.

Keywords

References

Cell Death Differ. 1998 Feb;5(2):156-62 [PMID: 10200460]
Exp Eye Res. 1999 May;68(5):553-63 [PMID: 10328969]
Anat Embryol (Berl). 1999 Oct;200(4):403-11 [PMID: 10460477]
Gene Expr Patterns. 2004 Nov;5(1):123-7 [PMID: 15533827]
Int J Dev Biol. 2004;48(8-9):1045-58 [PMID: 15558494]
Arch Ophthalmol. 2005 Jun;123(6):797-802 [PMID: 15955981]
Dev Dyn. 2005 Sep;234(1):36-47 [PMID: 16003775]
FASEB J. 2005 Sep;19(11):1564-6 [PMID: 15976268]
Cell Death Differ. 2005 Nov;12 Suppl 2:1473-7 [PMID: 16247493]
J Neurochem. 2005 Dec;95(5):1237-48 [PMID: 16150054]
J Cell Sci. 2005 Dec 15;118(Pt 24):5691-8 [PMID: 16303850]
Neuroscience. 2006;137(2):447-61 [PMID: 16289888]
Curr Opin Cell Biol. 2006 Apr;18(2):213-22 [PMID: 16488590]
Chem Biol. 2006 Nov;13(11):1235-42 [PMID: 17114005]
Angiogenesis. 2006;9(4):209-24 [PMID: 17109192]
FASEB J. 2007 Jan;21(1):108-16 [PMID: 17135365]
Invest Ophthalmol Vis Sci. 2007 Feb;48(2):491-9 [PMID: 17251441]
Mol Vis. 2007;13:47-56 [PMID: 17277743]
Mol Cell Biol. 2007 Jun;27(11):3982-94 [PMID: 17371842]
Development. 2007 Aug;134(15):2709-18 [PMID: 17611219]
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29 [PMID: 17912264]
Mol Cell Neurosci. 2008 Jan;37(1):85-95 [PMID: 17931883]
J Cell Sci. 2008 Feb 15;121(Pt 4):413-20 [PMID: 18256384]
Semin Cell Dev Biol. 2008 Apr;19(2):134-49 [PMID: 18035564]
J Cell Biol. 2008 Feb 25;180(4):755-62 [PMID: 18299346]
Development. 2008 Nov;135(21):3567-76 [PMID: 18832390]
J Biol Chem. 2008 Oct 17;283(42):28029-37 [PMID: 18703509]
Biochem Pharmacol. 2008 Dec 1;76(11):1352-64 [PMID: 18708031]
Dev Cell. 2009 Feb;16(2):158-9 [PMID: 19217415]
Exp Eye Res. 2009 Feb;88(2):173-89 [PMID: 19007775]
Cell. 2009 Apr 17;137(2):216-33 [PMID: 19379690]
Nat Rev Mol Cell Biol. 2009 Sep;10(9):609-22 [PMID: 19696798]
Dev Cell. 2009 Sep;17(3):387-402 [PMID: 19758563]
Biochem Soc Trans. 2009 Dec;37(Pt 6):1233-6 [PMID: 19909253]
Development. 2010 Jun;137(11):1825-32 [PMID: 20460366]
PLoS One. 2010;5(7):e11863 [PMID: 20686684]
J Cell Sci. 2011 Feb 15;124(Pt 4):523-31 [PMID: 21266465]
Eur J Cell Biol. 2011 May;90(5):440-8 [PMID: 21354650]
J Mol Histol. 2011 Feb;42(1):59-69 [PMID: 21203897]
Development. 2011 Sep;138(17):3593-612 [PMID: 21828089]
Cell Death Dis. 2011;2:e217 [PMID: 21993393]
BMC Dev Biol. 2011;11:60 [PMID: 21999428]
J Cell Biol. 2011 Nov 14;195(4):689-701 [PMID: 22084310]
Transgenic Res. 2012 Oct;21(5):1033-42 [PMID: 22427112]
Nucleic Acids Res. 2013 Jan;41(Database issue):D56-63 [PMID: 23193274]
PLoS One. 2013;8(1):e54565 [PMID: 23382914]
Nature. 2013 Feb 14;494(7436):243-6 [PMID: 23334418]
Nat Commun. 2013;4:1629 [PMID: 23535650]
Invest Ophthalmol Vis Sci. 2014 Mar;55(3):1594-606 [PMID: 24550361]
Autophagy. 2014 Mar;10(3):480-96 [PMID: 24468901]
Aging Cell. 2014 Dec;13(6):1091-4 [PMID: 25257511]
Prog Retin Eye Res. 2015 Jan;44:62-85 [PMID: 25461968]
Sci Rep. 2015;5:8755 [PMID: 25736717]
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3225-30 [PMID: 17296941]
Mol Biol Rep. 1999 Aug;26(3):201-5 [PMID: 10532316]
Oncogene. 2000 May 15;19(21):2548-56 [PMID: 10851053]
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10442-7 [PMID: 10973493]
Nature. 2000 Sep 14;407(6801):242-8 [PMID: 11001067]
Trends Neurosci. 2001 Sep;24(9):492-4 [PMID: 11506867]
Prog Retin Eye Res. 2001 Nov;20(6):799-821 [PMID: 11587918]
J Neurosci Res. 2002 Sep 15;69(6):848-60 [PMID: 12205678]
J Cell Biol. 2003 Jun 23;161(6):1163-77 [PMID: 12810700]
Trends Neurosci. 2003 Oct;26(10):523-30 [PMID: 14522144]
Cell Struct Funct. 2003 Oct;28(5):455-63 [PMID: 14745137]
Prog Biophys Mol Biol. 2004 Nov;86(3):407-85 [PMID: 15302206]
Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3387-96 [PMID: 15452040]
Vet Rec. 1984 Oct 13;115(15):385 [PMID: 6506414]
Vet Q. 1991 Jan;13(1):24-9 [PMID: 2021051]
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449-53 [PMID: 1438232]
Cell. 1993 Aug 13;74(3):453-62 [PMID: 8348612]
Science. 1994 Apr 1;264(5155):95-8 [PMID: 8140422]
Invest Ophthalmol Vis Sci. 1996 Nov;37(12):2455-66 [PMID: 8933762]
Am J Ophthalmol. 1997 Nov;124(5):587-626 [PMID: 9372715]

Grants

  1. EY019037/NEI NIH HHS
  2. R01 EY019037/NEI NIH HHS
  3. P30 EY001765/NEI NIH HHS
  4. EY018636/NEI NIH HHS
  5. R01 EY018636/NEI NIH HHS
  6. EY01765/NEI NIH HHS
  7. EY019037-S/NEI NIH HHS

MeSH Term

Animals
Chronic Disease
Eye Proteins
Humans
Models, Biological
Persistent Hyperplastic Primary Vitreous
Retinal Vessels
beta-Crystallin A Chain

Chemicals

CRYBA1 protein, human
Eye Proteins
beta-Crystallin A Chain