Social Transitions Cause Rapid Behavioral and Neuroendocrine Changes.

Karen P Maruska
Author Information
  1. Karen P Maruska: Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA kmaruska@lsu.edu.

Abstract

In species that form dominance hierarchies, there are often opportunities for low-ranking individuals to challenge high-ranking ones, resulting in a rise or fall in social rank. How does an animal rapidly detect, process, and then respond to these social transitions? This article explores and summarizes how these social transitions can rapidly (within 24 h) impact an individual's behavior, physiology, and brain, using the African cichlid fish, Astatotilapia burtoni, as a model. Male A. burtoni form hierarchies in which a few brightly-colored dominant males defend territories and spawn with females, while the remaining males are subordinate, more drab-colored, do not hold a territory, and have minimal opportunities for reproduction. These social phenotypes are plastic and reversible, meaning that individual males may switch between dominant and subordinate status multiple times within a lifetime. When the social environment is manipulated to create males that either ascend (subordinate to dominant) or descend (dominant to subordinate) in rank, there are rapid changes in behavior, circulating hormones, and levels of gene expression in the brain that reflect the direction of transition. For example, within minutes, males ascending in status show bright coloration, a distinct eye-bar, increased dominance behaviors, activation of brain nuclei in the social behavior network, and higher levels of sex steroids in the plasma. Ascending males also show rapid changes in levels of neuropeptide and steroid receptors in the brain, as well as in the pituitary and testes. To further examine hormone-behavior relationships in this species during rapid social ascent, the present study also measured levels of testosterone, 11-ketotestosterone, estradiol, progestins, and cortisol in the plasma during the first week of social ascent and tested for correlations with behavior. Plasma levels of all steroids were rapidly increased at 30 min after social ascent, but were not correlated with behavior during the initial rise in rank, suggesting that behavior is dissociated from endocrine status. These changes during social ascent are then compared with our current knowledge about males descending in rank, who rapidly show faded coloration, decreased dominance behaviors, increased subordinate behaviors, and higher circulating levels of cortisol. Collectively, this work highlights how the perception of similar social cues that are opposite in value are rapidly translated into adaptive behavioral and neuroendocrine changes that promote survival and reproductive fitness. Finally, future directions are proposed to better understand the mechanisms that govern these rapid changes in social position.

References

  1. Front Neurosci. 2014 Jul 22;8:209 [PMID: 25100938]
  2. J Exp Biol. 2013 Oct 1;216(Pt 19):3656-66 [PMID: 23788709]
  3. Physiol Behav. 1999 Mar;66(1):59-62 [PMID: 10222474]
  4. PLoS Biol. 2005 Nov;3(11):e363 [PMID: 16216088]
  5. Front Neuroendocrinol. 2012 Aug;33(3):287-300 [PMID: 23041619]
  6. Endocrinology. 2011 Jan;152(1):291-302 [PMID: 21084443]
  7. Proc Biol Sci. 1996 Dec 22;263(1377):1683-8 [PMID: 9025314]
  8. PLoS One. 2014;9(5):e96632 [PMID: 24824619]
  9. Horm Behav. 2010 Apr;57(4-5):381-9 [PMID: 20116379]
  10. Nature. 2011 Feb 10;470(7333):221-6 [PMID: 21307935]
  11. J Exp Biol. 2015 Jan 1;218(Pt 1):140-9 [PMID: 25568461]
  12. Biol Rev Camb Philos Soc. 2006 Feb;81(1):33-74 [PMID: 16460581]
  13. J Exp Biol. 2002 Sep;205(Pt 17):2567-81 [PMID: 12151363]
  14. J Neuroendocrinol. 2013 Feb;25(2):145-57 [PMID: 22958303]
  15. Science. 2005 Apr 29;308(5722):648-52 [PMID: 15860617]
  16. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  17. Front Neuroendocrinol. 2009 Aug;30(3):259-301 [PMID: 19505496]
  18. Horm Behav. 2010 Jul;58(2):230-40 [PMID: 20303357]
  19. Nat Neurosci. 2008 Nov;11(11):1327-34 [PMID: 18820691]
  20. J Comp Neurol. 2012 Oct 15;520(15):3471-91 [PMID: 22431175]
  21. Endocrinology. 2012 Mar;153(3):1341-51 [PMID: 22166981]
  22. Gen Comp Endocrinol. 2014 Oct 1;207:2-12 [PMID: 24859257]
  23. Horm Behav. 2005 Jun;48(1):11-22 [PMID: 15885690]
  24. BMC Neurosci. 2010;11:58 [PMID: 20433748]
  25. Neuropsychologia. 2009 Jan;47(2):354-63 [PMID: 18992759]
  26. Horm Behav. 2014 Jan;65(1):14-21 [PMID: 24246377]
  27. Physiol Behav. 2012 Jul 16;106(5):612-8 [PMID: 22521514]
  28. Proc Biol Sci. 2009 Jun 22;276(1665):2249-56 [PMID: 19324741]
  29. Endocrinology. 2011 Jan;152(1):281-90 [PMID: 21068157]
  30. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Mar;191(3):241-52 [PMID: 15372303]
  31. Curr Opin Neurobiol. 2014 Dec;29:96-102 [PMID: 24995791]
  32. Nature. 2014 Sep 18;513(7518):375-81 [PMID: 25186727]
  33. Integr Comp Biol. 2013 Dec;53(6):938-50 [PMID: 23613320]
  34. Horm Behav. 2005 Sep;48(3):259-67 [PMID: 15979073]
  35. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17194-9 [PMID: 23045669]
  36. Trends Cogn Sci. 2014 Sep;18(9):465-71 [PMID: 24815200]
  37. Proc Biol Sci. 2012 Feb 7;279(1728):434-43 [PMID: 21733892]
  38. Ann N Y Acad Sci. 1999 Jun 29;877:242-57 [PMID: 10415653]
  39. Adv Exp Med Biol. 2014;781:149-68 [PMID: 24277299]
  40. Endocrinology. 2010 May;151(5):2349-60 [PMID: 20308533]
  41. J Comp Neurol. 2011 Dec 15;519(18):3599-639 [PMID: 21800319]
  42. J Neurobiol. 1990 Dec;21(8):1180-8 [PMID: 2273399]
  43. Front Endocrinol (Lausanne). 2011 Sep 29;2:28 [PMID: 22654800]
  44. J Endocrinol. 2006 Jul;190(1):183-90 [PMID: 16837622]
  45. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12393-8 [PMID: 20616093]
  46. Gen Comp Endocrinol. 2010 Feb 1;165(3):412-37 [PMID: 19686749]
  47. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 [PMID: 18775941]
  48. Physiology (Bethesda). 2011 Dec;26(6):412-23 [PMID: 22170959]
  49. Physiol Behav. 2008 Dec 15;95(5):633-40 [PMID: 18824186]
  50. Nature. 1995 Oct 26;377(6551):688-90 [PMID: 7477258]
  51. Gen Comp Endocrinol. 2014 Oct 1;207:34-40 [PMID: 24681190]
  52. Brain Res. 2006 Dec 18;1126(1):27-35 [PMID: 16854385]
  53. Gen Comp Endocrinol. 2013 Jan 1;180:56-63 [PMID: 23168085]
  54. Horm Behav. 2012 Apr;61(4):631-41 [PMID: 22373495]

Grants

  1. F32NS061431/NINDS NIH HHS

MeSH Term

Animals
Cichlids
Gonadal Steroid Hormones
Hierarchy, Social
Hydrocortisone
Male
Social Behavior

Chemicals

Gonadal Steroid Hormones
Hydrocortisone

Word Cloud

Created with Highcharts 10.0.0socialmalesbehaviorlevelsrapidlysubordinatechangesrankbraindominantrapidascentdominancewithinstatusshowincreasedbehaviorsspeciesformhierarchiesopportunitiesriseburtonicirculatingcolorationhighersteroidsplasmaalsocortisoloftenlow-rankingindividualschallengehigh-rankingonesresultingfallanimaldetectprocessrespondtransitions?articleexploressummarizestransitionscan24himpactindividual'sphysiologyusingAfricancichlidfishAstatotilapiamodelMalebrightly-coloreddefendterritoriesspawnfemalesremainingdrab-coloredholdterritoryminimalreproductionphenotypesplasticreversiblemeaningindividualmayswitchmultipletimeslifetimeenvironmentmanipulatedcreateeitherascenddescendhormonesgeneexpressionreflectdirectiontransitionexampleminutesascendingbrightdistincteye-baractivationnucleinetworksexAscendingneuropeptidesteroidreceptorswellpituitarytestesexaminehormone-behaviorrelationshipspresentstudymeasuredtestosterone11-ketotestosteroneestradiolprogestinsfirstweektestedcorrelationsPlasma30mincorrelatedinitialsuggestingdissociatedendocrinecomparedcurrentknowledgedescendingfadeddecreasedCollectivelyworkhighlightsperceptionsimilarcuesoppositevaluetranslatedadaptivebehavioralneuroendocrinepromotesurvivalreproductivefitnessFinallyfuturedirectionsproposedbetterunderstandmechanismsgovernpositionSocialTransitionsCauseRapidBehavioralNeuroendocrineChanges

Similar Articles

Cited By