Bayesian multivariate augmented Beta rectangular regression models for patient-reported outcomes and survival data.

Jue Wang, Sheng Luo
Author Information
  1. Jue Wang: Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  2. Sheng Luo: Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Abstract

Many longitudinal studies (e.g. observational studies and randomized clinical trials) have collected multiple rating scales at each visit in the form of patient-reported outcomes (PROs) in the close unit interval [0 ,1]. We propose a joint modeling framework to address the issues from the following data features: (1) multiple correlated PROs; (2) the presence of the boundary values of zeros and ones; (3) extreme outliers and heavy tails; (4) the PRO-dependent terminal events such as death and dropout. Our modeling framework consists of a multivariate augmented mixed-effects sub-model based on Beta rectangular distributions for the multiple longitudinal outcomes and a Cox model for the terminal events. The simulation studies suggest that in the presence of outliers, heavy tails, and dependent terminal event, our proposed models provide more accurate parameter estimates than the joint model based on Beta distributions. The proposed models are applied to the motivating Long-term Study-1 (LS-1 study, n = 1741) of Parkinson's disease patients.

Keywords

References

  1. Qual Life Res. 1995 Jun;4(3):241-8 [PMID: 7613534]
  2. Stat Med. 2013 Dec 20;32(29):5133-44 [PMID: 23913574]
  3. Stat Med. 2003 May 30;22(10):1631-47 [PMID: 12720301]
  4. Mov Disord. 2012 Oct;27(12):1513-21 [PMID: 23079770]
  5. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  6. Stat Med. 2014 Sep 20;33(21):3759-71 [PMID: 24764045]
  7. Biometrics. 2002 Dec;58(4):742-53 [PMID: 12495128]
  8. J Biopharm Stat. 2011 Sep;21(5):971-91 [PMID: 21830926]
  9. Stat Med. 2014 Jul 10;33(15):2554-66 [PMID: 24473943]
  10. J Clin Oncol. 2010 Jun 1;28(16):2796-801 [PMID: 20439643]
  11. JAMA. 2015 Feb 10;313(6):584-93 [PMID: 25668262]
  12. Ther Adv Neurol Disord. 2012 Mar;5(2):105-17 [PMID: 22435075]
  13. Stat Methods Med Res. 2016 Aug;25(4):1346-58 [PMID: 23592717]
  14. Aust N Z J Stat. 2010 Sep;52(3):275-288 [PMID: 21731424]
  15. Stat Med. 2014 Feb 20;33(4):580-94 [PMID: 24009073]

Grants

  1. KL2 TR000370/NCATS NIH HHS
  2. UL1 TR000371/NCATS NIH HHS

MeSH Term

Bayes Theorem
Creatine
Humans
Longitudinal Studies
Markov Chains
Models, Statistical
Monte Carlo Method
Multivariate Analysis
Observational Studies as Topic
Parkinson Disease
Patient Reported Outcome Measures
Proportional Hazards Models
Randomized Controlled Trials as Topic
Regression Analysis

Chemicals

Creatine

Word Cloud

Created with Highcharts 10.0.0Betadatalongitudinalstudiesmultipleoutcomesterminalrectangularmodelspatient-reportedPROsjointmodelingframeworkpresenceoutliersheavytailseventsmultivariateaugmentedbaseddistributionsmodelproposedregressionManyegobservationalrandomizedclinicaltrialscollectedratingscalesvisitformcloseunitinterval[01]proposeaddressissuesfollowingfeatures:1correlated2boundaryvalueszerosones3extreme4PRO-dependentdeathdropoutconsistsmixed-effectssub-modelCoxsimulationsuggestdependenteventprovideaccurateparameterestimatesappliedmotivatingLong-termStudy-1LS-1studyn = 1741Parkinson'sdiseasepatientsBayesiansurvivalAugmenteddistributionMarkovchainMonteCarloproportional

Similar Articles

Cited By (4)