Responses of bacterial communities in seagrass sediments to polycyclic aromatic hydrocarbon-induced stress.

Juan Ling, Yu-Feng Jiang, You-Shao Wang, Jun-De Dong, Yan-Ying Zhang, Yuan-Zhou Zhang
Author Information
  1. Juan Ling: Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
  2. Yu-Feng Jiang: Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
  3. You-Shao Wang: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. yswang@scsio.ac.cn.
  4. Jun-De Dong: Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. dongjunde@vip.163.com.
  5. Yan-Ying Zhang: Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
  6. Yuan-Zhou Zhang: Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.

Abstract

The seagrass meadows represent one of the highest productive marine ecosystems, and have the great ecological and economic values. Bacteria play important roles in energy flow, nutrient biogeochemical cycle and organic matter turnover in marine ecosystems. The seagrass meadows are experiencing a world-wide decline, and the pollution is one of the main reasons. Polycyclic aromatic hydrocarbons (PAHs) are thought be the most common. Bacterial communities in the seagrass Enhalus acoroides sediments were analyzed for their responses to PAHs induced stress. Dynamics of the composition and abundance of bacterial communities during the incubation period were explored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR assay, respectively. Both the incubation time and the PAHs concentration played significant roles in determining the microbial diversity, as reflected by the detected DGGE bands. Analysis of sequencing results showed that the Gammaproteobacteria were dominant in the seagrass sediments, accounting for 61.29 % of all sequenced bands. As PAHs could be used as carbon source for microbes, the species and diversity of the PAH-added groups (group 1 and 2) presented higher Shannon Wiener index than the group CK, with the group 1 showing the highest values almost through the same incubation stage. Patterns of changes in abundance of the three groups over the experiment time were quite different. The bacterial abundance of the group CK and group 2 decreased sharply from 4.15 × 10(11) and 6.37 × 10(11) to 1.17 × 10(10) and 1.07 × 10(10) copies/g from day 2 to 35, respectively while bacterial abundance of group 1 increased significantly from 1.59 × 10(11) copies/g at day 2 to 8.80 × 10(11) copies/g at day 7, and then dropped from day 14 till the end of the incubation. Statistical analysis (UMPGA and PCA) results suggested that the bacterial community were more likely to be affected by the incubation time than the concentration of the PAHs. This study provided the important information about dynamics of bacterial community under the PAHs stress and revealed the high bacterial diversity in sediments of E. acoroides. Investigation results also indicated that microbial community structure in the seagrass sediment were sensible to the PAHs induced stress, and may be used as potential indicators for the PAHs contamination.

Keywords

References

  1. BMC Genomics. 2013 Jun 28;14:431 [PMID: 23809012]
  2. J Environ Sci (China). 2008;20(6):732-8 [PMID: 18763569]
  3. FEMS Microbiol Ecol. 2007 Oct;62(1):108-17 [PMID: 17825072]
  4. Bioresour Technol. 2011 Oct;102(20):9438-46 [PMID: 21862321]
  5. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  6. Front Microbiol. 2015 Jan 30;6:22 [PMID: 25688237]
  7. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  8. FEMS Microbiol Ecol. 2014 Jan;87(1):291-301 [PMID: 24117806]
  9. Appl Microbiol Biotechnol. 2014 Apr;98(7):3219-29 [PMID: 24220790]
  10. ISME J. 2013 Jan;7(1):122-36 [PMID: 22832345]
  11. Microb Ecol. 2009 Jul;58(1):153-60 [PMID: 18958515]
  12. Antonie Van Leeuwenhoek. 1998 Jan;73(1):127-41 [PMID: 9602286]
  13. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12377-81 [PMID: 19587236]
  14. Microb Ecol. 2006 Nov;52(4):655-61 [PMID: 16767522]
  15. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767-71 [PMID: 3474623]
  16. Ecotoxicology. 2012 Aug;21(6):1651-60 [PMID: 22699412]
  17. J Bacteriol. 2012 Dec;194(24):6938 [PMID: 23209204]
  18. J Environ Biol. 2012 Nov;33(6):1033-7 [PMID: 23741797]
  19. Appl Environ Microbiol. 1996 Feb;62(2):625-30 [PMID: 8593063]
  20. J Hazard Mater. 2009 Dec 30;172(2-3):1464-9 [PMID: 19717238]
  21. Ecotoxicol Environ Saf. 1994 Jul;28(2):160-71 [PMID: 7525212]
  22. Arch Microbiol. 2008 Jul;190(1):19-28 [PMID: 18347779]
  23. J Hazard Mater. 2009 Dec 15;172(1):84-91 [PMID: 19616894]
  24. Ecotoxicology. 2012 Aug;21(6):1669-79 [PMID: 22707093]
  25. Nucleic Acids Res. 1999 Jan 1;27(1):171-3 [PMID: 9847171]
  26. Appl Environ Microbiol. 2009 Oct;75(19):6322-30 [PMID: 19633127]
  27. FEMS Microbiol Ecol. 2002 Feb 1;39(2):113-9 [PMID: 19709190]
  28. Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):969-73 [PMID: 20511464]
  29. Appl Environ Microbiol. 2005 Nov;71(11):7008-18 [PMID: 16269736]
  30. Annu Rev Earth Planet Sci. 1997;25:403-34 [PMID: 11540735]
  31. Microb Ecol. 2010 Feb;59(2):284-95 [PMID: 19705193]
  32. Environ Pollut. 2010 Sep;158(9):2872-9 [PMID: 20615597]
  33. Appl Environ Microbiol. 1993 Mar;59(3):695-700 [PMID: 7683183]
  34. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  35. Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1483-7 [PMID: 15388699]

MeSH Term

Alismatales
Bacteria
China
DNA, Bacterial
Denaturing Gradient Gel Electrophoresis
Geologic Sediments
Microbiota
Molecular Sequence Data
Phylogeny
Polycyclic Aromatic Hydrocarbons
RNA, Ribosomal, 16S
Real-Time Polymerase Chain Reaction
Sequence Analysis, DNA
Water Pollutants, Chemical

Chemicals

DNA, Bacterial
Polycyclic Aromatic Hydrocarbons
RNA, Ribosomal, 16S
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0PAHs10bacterialseagrassgroup1×incubationcommunitiessedimentsstressabundance211daytimediversityresultscopies/gcommunitymeadowsonehighestmarineecosystemsvaluesimportantrolesaromaticBacterialacoroidesinducedPCR-DGGErespectivelyconcentrationmicrobialbandsusedgroupsCKrepresentproductivegreatecologicaleconomicBacteriaplayenergyflownutrientbiogeochemicalcycleorganicmatterturnoverexperiencingworld-widedeclinepollutionmainreasonsPolycyclichydrocarbonsthoughtcommonEnhalusanalyzedresponsesDynamicscompositionperiodexploredpolymerasechainreactiondenaturinggradientgelelectrophoresisquantitativePCRassayplayedsignificantdeterminingreflecteddetectedDGGEAnalysissequencingshowedGammaproteobacteriadominantaccounting6129%sequencedcarbonsourcemicrobesspeciesPAH-addedpresentedhigherShannonWienerindexshowingalmoststagePatternschangesthreeexperimentquitedifferentdecreasedsharply415637170735increasedsignificantly598807dropped14tillendStatisticalanalysisUMPGAPCAsuggestedlikelyaffectedstudyprovidedinformationdynamicsrevealedhighEInvestigationalsoindicatedstructuresedimentsensiblemaypotentialindicatorscontaminationResponsespolycyclichydrocarbon-inducedPAHSeagrassSouthChinaSeaXincunBayqPCR

Similar Articles

Cited By