Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning.

Amparo Alonso-Betanzos, Verónica Bolón-Canedo, Guy R Heyndrickx, Peter Lm Kerkhof
Author Information
  1. Amparo Alonso-Betanzos: Department of Computer Science, Universidad de A Coruña, Coruña, Spain.
  2. Verónica Bolón-Canedo: Department of Computer Science, Universidad de A Coruña, Coruña, Spain.
  3. Guy R Heyndrickx: Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.
  4. Peter Lm Kerkhof: Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands.

Abstract

BACKGROUND: Heart failure (HF) manifests as at least two subtypes. The current paradigm distinguishes the two by using both the metric ejection fraction (EF) and a constraint for end-diastolic volume. About half of all HF patients exhibit preserved EF. In contrast, the classical type of HF shows a reduced EF. Common practice sets the cut-off point often at or near EF = 50%, thus defining a linear divider. However, a rationale for this safe choice is lacking, while the assumption regarding applicability of strict linearity has not been justified. Additionally, some studies opt for eliminating patients from consideration for HF if 40 < EF < 50% (gray zone). Thus, there is a need for documented classification guidelines, solving gray zone ambiguity and formulating crisp delineation of transitions between phenotypes.
METHODS: Machine learning (ML) models are applied to classify HF subtypes within the ventricular volume domain, rather than by the single use of EF. Various ML models, both unsupervised and supervised, are employed to establish a foundation for classification. Data regarding 48 HF patients are employed as training set for subsequent classification of Monte Carlo-generated surrogate HF patients (n = 403). Next, we map consequences when EF cut-off differs from 50% (as proposed for women) and analyze HF candidates not covered by current rules.
RESULTS: The training set yields best results for the Support Vector Machine method (test error 4.06%), covers the gray zone, and other clinically relevant HF candidates. End-systolic volume (ESV) emerges as a logical discriminator rather than EF as in the prevailing paradigm.
CONCLUSIONS: Selected ML models offer promise for classifying HF patients (including the gray zone), when driven by ventricular volume data. ML analysis indicates that ESV has a role in the development of guidelines to parse HF subtypes. The documented curvilinear relationship between EF and ESV suggests that the assumption concerning a linear EF divider may not be of general utility over the complete clinically relevant range.

Keywords

References

  1. J Clin Epidemiol. 2013 Apr;66(4):398-407 [PMID: 23384592]
  2. Circulation. 2002 Mar 19;105(11):1387-93 [PMID: 11901053]
  3. Eur J Heart Fail. 2014 Jul;16(7):767-71 [PMID: 24806550]
  4. J Nucl Cardiol. 1994 Sep-Oct;1(5 Pt 1):477-86 [PMID: 9420731]
  5. IEEE Trans Biomed Eng. 1998 Mar;45(3):365-71 [PMID: 9509752]
  6. J Thorac Cardiovasc Surg. 2001 Apr;121(4):628-37 [PMID: 11279401]
  7. Circ Heart Fail. 2013 Sep 1;6(5):881-9 [PMID: 23888045]
  8. J Card Fail. 2010 Jun;16(6):e1-194 [PMID: 20610207]
  9. Am Heart J. 2009 Apr;157(4):754-62.e2 [PMID: 19332206]
  10. Med Care. 2010 Jun;48(6 Suppl):S106-13 [PMID: 20473190]
  11. Circ Heart Fail. 2014 Jan;7(1):104-15 [PMID: 24249049]
  12. Clin Res Cardiol. 2010 Feb;99(2):75-82 [PMID: 20039172]
  13. Circ Cardiovasc Qual Outcomes. 2013 Nov;6(6):680-6 [PMID: 24129973]
  14. J Am Coll Cardiol. 2010 Apr 20;55(16):1701-10 [PMID: 20394874]
  15. Clin Med Insights Cardiol. 2015 Feb 25;9(Suppl 1):11-31 [PMID: 25780344]
  16. Br Heart J. 1981 Jul;46(1):17-22 [PMID: 6115659]
  17. Eur J Heart Fail. 2014 May;16(5):535-42 [PMID: 24574260]
  18. Circulation. 2015 Apr 7;131(14):1247-59 [PMID: 25637629]
  19. Circulation. 2015 Jan 20;131(3):269-79 [PMID: 25398313]
  20. Eur J Heart Fail. 2013 Jun;15(6):604-13 [PMID: 23610137]
  21. Eur Heart J. 2009 Aug;30(15):1863-72 [PMID: 19487234]
  22. Heart. 2008 Apr;94(4):400-1 [PMID: 18347366]
  23. Circ Heart Fail. 2012 Nov;5(6):720-6 [PMID: 22936826]
  24. Anesthesiology. 1991 Jan;74(1):172-83 [PMID: 1986643]
  25. Cardiol Res Pract. 2013;2013:130724 [PMID: 24251065]
  26. Circ Heart Fail. 2012 Nov;5(6):669-71 [PMID: 23170020]
  27. UCLA Forum Med Sci. 1970;10:201-30 [PMID: 4939441]
  28. Heart Fail Rev. 2012 Sep;17(4-5):555-62 [PMID: 21818681]
  29. Eur Heart J. 2007 Oct;28(20):2539-50 [PMID: 17428822]
  30. Physiol Rep. 2013 Jul;1(2):e0007 [PMID: 24303121]
  31. Eur Heart J. 2012 Jul;33(14):1787-847 [PMID: 22611136]

Word Cloud

Created with Highcharts 10.0.0HFEFvolumepatientsgrayzoneMLsubtypes50%classificationMachinemodelsESVHeartfailuretwocurrentparadigmejectionfractioncut-off=lineardividerassumptionregarding<documentedguidelinesventricularratheremployedtrainingsetcandidatesclinicallyrelevantBACKGROUND:manifestsleastdistinguishesusingmetricconstraintend-diastolichalfexhibitpreservedcontrastclassicaltypeshowsreducedCommonpracticesetspointoftennearthusdefiningHoweverrationalesafechoicelackingapplicabilitystrictlinearityjustifiedAdditionallystudiesopteliminatingconsideration40ThusneedsolvingambiguityformulatingcrispdelineationtransitionsphenotypesMETHODS:learningappliedclassifywithindomainsingleuseVariousunsupervisedsupervisedestablishfoundationData48subsequentMonteCarlo-generatedsurrogaten403NextmapconsequencesdiffersproposedwomenanalyzecoveredrulesRESULTS:yieldsbestresultsSupportVectormethodtesterror406%coversEnd-systolicemergeslogicaldiscriminatorprevailingCONCLUSIONS:SelectedofferpromiseclassifyingincludingdrivendataanalysisindicatesroledevelopmentparsecurvilinearrelationshipsuggestsconcerningmaygeneralutilitycompleterangeExploringGuidelinesClassificationMajorFailureSubtypesUsingLearningheartphenotypesupportvectormachineregulationgraph

Similar Articles

Cited By (5)