Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection.

Thomas W Geisbert, James E Strong, Heinz Feldmann
Author Information
  1. Thomas W Geisbert: Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.
  2. James E Strong: Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada Department of Medical Microbiology Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada.
  3. Heinz Feldmann: Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.

Abstract

The filoviruses, Ebola virus and Marburg virus, are zoonotic pathogens that cause severe hemorrhagic fever in humans and nonhuman primates (NHPs), with case-fatality rates ranging from 23% to 90%. The current outbreak of Ebola virus infection in West Africa, with >26 000 cases, demonstrates the long-underestimated public health danger that filoviruses pose as natural human pathogens. Currently, there are no vaccines or treatments licensed for human use. Licensure of any medical countermeasure may require demonstration of efficacy in the gold standard cynomolgus or rhesus macaque models of filovirus infection. Substantial progress has been made over the last decade in characterizing the filovirus NHP models. However, there is considerable debate over a variety of experimental conditions, including differences among filovirus isolates used, routes and doses of exposure, and euthanasia criteria, all of which may contribute to variability of results among different laboratories. As an example of the importance of understanding these differences, recent data with Ebola virus shows that an addition of a single uridine residue in the glycoprotein gene at the editing site attenuates the virus. Here, we draw on decades of experience working with filovirus-infected NHPs to provide a perspective on the importance of various experimental conditions.

Keywords

References

  1. Nature. 2015 Apr 30;520(7549):688-691 [PMID: 25853476]
  2. PLoS Pathog. 2013;9(10):e1003677 [PMID: 24146620]
  3. Arch Pathol Lab Med. 1996 Feb;120(2):140-55 [PMID: 8712894]
  4. Emerg Infect Dis. 2002 May;8(5):503-7 [PMID: 11996686]
  5. Clin Infect Dis. 2015 Aug 15;61(4):496-502 [PMID: 25904375]
  6. PLoS Pathog. 2012;8(12):e1003065 [PMID: 23271969]
  7. J Infect Dis. 1999 Feb;179 Suppl 1:S203-17 [PMID: 9988186]
  8. N Engl J Med. 2017 Jan 26;376(4):330-341 [PMID: 25830322]
  9. J Infect Dis. 2015 Oct 1;212 Suppl 2:S234-41 [PMID: 25957966]
  10. N Engl J Med. 2014 Dec 18;371(25):2402-9 [PMID: 25390460]
  11. J Infect Dis. 2007 Nov 15;196 Suppl 2:S305-12 [PMID: 17940965]
  12. Nature. 2014 Oct 2;514(7520):47-53 [PMID: 25171469]
  13. Virology. 2011 Nov 25;420(2):117-24 [PMID: 21959017]
  14. Viruses. 2014 Jul 09;6(7):2673-97 [PMID: 25010768]
  15. J Infect Dis. 2015 Oct 1;212 Suppl 2:S305-15 [PMID: 26038397]
  16. Microbes Infect. 2011 Oct;13(11):930-6 [PMID: 21651988]
  17. Nature. 2000 Nov 30;408(6812):605-9 [PMID: 11117750]
  18. N Engl J Med. 2015 Aug 20;373(8):776 [PMID: 26287857]
  19. J Infect Dis. 2013 Jan 15;207(2):306-18 [PMID: 23045629]
  20. Bull World Health Organ. 1978;56(2):271-93 [PMID: 307456]
  21. J Infect Dis. 2011 Nov;204 Suppl 3:S810-6 [PMID: 21987756]
  22. Science. 2014 Nov 21;346(6212):987-91 [PMID: 25359852]
  23. N Engl J Med. 2016 Apr 28;374(17):1647-60 [PMID: 25830326]
  24. J Virol. 2009 Jul;83(13):6404-15 [PMID: 19369350]
  25. Vet Pathol. 2010 Sep;47(5):831-51 [PMID: 20807825]
  26. J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 [PMID: 17940973]
  27. PLoS One. 2012;7(11):e50316 [PMID: 23209706]
  28. J Infect Dis. 2015 Oct 1;212 Suppl 2:S258-70 [PMID: 26092858]
  29. J Infect Dis. 2011 Nov;204 Suppl 3:S941-6 [PMID: 21987773]
  30. Nature. 2003 Aug 7;424(6949):681-4 [PMID: 12904795]
  31. Nature. 2015 May 21;521(7552):362-5 [PMID: 25901685]
  32. Virology. 1995 Dec 20;214(2):421-30 [PMID: 8553543]
  33. N Engl J Med. 2016 Apr 28;374(17):1635-46 [PMID: 25629663]
  34. J Comp Pathol. 2001 Nov;125(4):243-53 [PMID: 11798241]
  35. J Virol. 1998 Aug;72(8):6442-7 [PMID: 9658086]
  36. Arch Pathol Lab Med. 1997 Aug;121(8):805-19 [PMID: 9278608]
  37. J Infect Dis. 1998 Sep;178(3):651-61 [PMID: 9728532]

Grants

  1. /Intramural NIH HHS

MeSH Term

Africa, Western
Animals
Disease Models, Animal
Disease Outbreaks
Ebolavirus
Glycoproteins
Hemorrhagic Fever, Ebola
Humans
Macaca fascicularis
Macaca mulatta
Marburg Virus Disease
Marburgvirus
Primates
Vaccines, Attenuated
Viral Vaccines

Chemicals

Glycoproteins
Vaccines, Attenuated
Viral Vaccines

Word Cloud

Created with Highcharts 10.0.0virusEbolafilovirusMarburgfilovirusespathogensnonhumanNHPsinfectionhumanmaymodelsexperimentalconditionsdifferencesamongimportanceViruszoonoticcauseseverehemorrhagicfeverhumansprimatescase-fatalityratesranging23%90%currentoutbreakWestAfrica>26000casesdemonstrateslong-underestimatedpublichealthdangerposenaturalCurrentlyvaccinestreatmentslicenseduseLicensuremedicalcountermeasurerequiredemonstrationefficacygoldstandardcynomolgusrhesusmacaqueSubstantialprogressmadelastdecadecharacterizingNHPHoweverconsiderabledebatevarietyincludingisolatesusedroutesdosesexposureeuthanasiacriteriacontributevariabilityresultsdifferentlaboratoriesexampleunderstandingrecentdatashowsadditionsingleuridineresidueglycoproteingeneeditingsiteattenuatesdrawdecadesexperienceworkingfilovirus-infectedprovideperspectivevariousConsiderationsUseNonhumanPrimateModelsInfectionanimalmodelprimatetreatmentvaccine

Similar Articles

Cited By