The emergence of cooperation from a single mutant during microbial life cycles.

Anna Melbinger, Jonas Cremer, Erwin Frey
Author Information
  1. Anna Melbinger: Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA amelbinger@ucsd.edu.
  2. Jonas Cremer: Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  3. Erwin Frey: Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.

Abstract

Cooperative behaviour is widespread in nature, even though cooperating individuals always run the risk of being exploited by free-riders. Population structure effectively promotes cooperation given that a threshold in the level of cooperation was already reached. However, the question how cooperation can emerge from a single mutant, which cannot rely on a benefit provided by other cooperators, is still puzzling. Here, we investigate this question for a well-defined but generic situation based on typical life cycles of microbial populations where individuals regularly form new colonies followed by growth phases. We analyse two evolutionary mechanisms favouring cooperative behaviour and study their strength depending on the inoculation size and the length of a life cycle. In particular, we find that population bottlenecks followed by exponential growth phases strongly increase the survival and fixation probabilities of a single cooperator in a free-riding population.

Keywords

References

  1. Nat Rev Microbiol. 2006 Aug;4(8):597-607 [PMID: 16845430]
  2. Annu Rev Microbiol. 2002;56:187-209 [PMID: 12142477]
  3. Bull Math Biol. 2006 Nov;68(8):1923-44 [PMID: 17086490]
  4. Evolution. 1985 May;39(3):545-558 [PMID: 28561972]
  5. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  6. Trends Ecol Evol. 1992 Oct;7(10):322-4 [PMID: 21236052]
  7. Nature. 1970 Aug 1;227(5257):520-1 [PMID: 5428476]
  8. Phys Rev Lett. 2010 Oct 22;105(17):178101 [PMID: 21231082]
  9. Nature. 2009 May 14;459(7244):253-6 [PMID: 19349960]
  10. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  11. Evolution. 2013 Jan;67(1):131-41 [PMID: 23289567]
  12. Evolution. 1977 Mar;31(1):134-153 [PMID: 28567731]
  13. PLoS Biol. 2008 Nov 25;6(11):e287 [PMID: 19067487]
  14. FEMS Microbiol Ecol. 2007 Nov;62(2):135-41 [PMID: 17919300]
  15. Microbiology (Reading). 2005 Mar;151(Pt 3):637-641 [PMID: 15758209]
  16. J Theor Biol. 2007 Mar 7;245(1):26-36 [PMID: 17087973]
  17. Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10952-5 [PMID: 16829575]
  18. Mol Syst Biol. 2010 Aug 10;6:398 [PMID: 20706208]
  19. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  20. Proc Natl Acad Sci U S A. 1975 Jan;72(1):143-6 [PMID: 1054490]
  21. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6736-9 [PMID: 17416674]
  22. Genetics. 1969 Mar;61(3):763-71 [PMID: 17248440]
  23. Artif Life. 2007 Winter;13(1):1-9 [PMID: 17204009]
  24. J Evol Biol. 2007 Mar;20(2):415-32 [PMID: 17305808]
  25. Nature. 2004 Aug 26;430(7003):1024-7 [PMID: 15329720]
  26. Evolution. 1982 Mar;36(2):271-282 [PMID: 28563169]
  27. Sci Rep. 2012;2:281 [PMID: 22355791]
  28. Am Nat. 2002 Aug;160(2):205-13 [PMID: 18707487]
  29. J Math Biol. 2006 May;52(5):667-81 [PMID: 16463183]
  30. Science. 2009 Jan 9;323(5911):272-5 [PMID: 19131632]
  31. J Theor Biol. 2012 Apr 21;299:106-12 [PMID: 21704639]
  32. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011909 [PMID: 16907129]
  33. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12577-82 [PMID: 23858453]
  34. Nature. 1973 Nov 9;246(5428):96-8 [PMID: 4585855]
  35. PLoS One. 2007 Jul 25;2(7):e634 [PMID: 17653261]
  36. J Theor Biol. 2004 Jun 7;228(3):303-13 [PMID: 15135029]
  37. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  38. Ecology. 2010 Feb;91(2):334-40 [PMID: 20391997]
  39. Bull Math Biol. 2004 Nov;66(6):1621-44 [PMID: 15522348]
  40. Phys Rev Lett. 2005 Dec 2;95(23):238701 [PMID: 16384353]
  41. Evolution. 2010 Feb 1;64(2):316-23 [PMID: 19929970]
  42. Trends Microbiol. 2003 Jul;11(7):330-7 [PMID: 12875817]
  43. Proc Biol Sci. 2009 Oct 7;276(1672):3531-8 [PMID: 19605393]
  44. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051921 [PMID: 22181458]
  45. PLoS Comput Biol. 2011 Mar;7(3):e1002005 [PMID: 21423714]
  46. Science. 2006 Dec 8;314(5805):1560-3 [PMID: 17158317]
  47. Trends Microbiol. 2004 Feb;12(2):72-8 [PMID: 15036323]
  48. Annu Rev Microbiol. 2009;63:599-623 [PMID: 19575567]
  49. Genetics. 2010 Aug;185(4):1345-54 [PMID: 20457879]
  50. Proc Biol Sci. 2006 Jun 22;273(1593):1477-81 [PMID: 16777741]
  51. Curr Biol. 2007 May 1;17(9):761-5 [PMID: 17379522]
  52. Proc Biol Sci. 2009 Jan 7;276(1654):13-9 [PMID: 18765343]
  53. Nature. 2007 Nov 15;450(7168):411-4 [PMID: 18004383]

MeSH Term

Bacteria
Microbial Consortia
Models, Biological
Mutation

Word Cloud

Created with Highcharts 10.0.0cooperationsinglelifebehaviourindividualsquestionmutantcyclesmicrobialfollowedgrowthphasespopulationCooperativewidespreadnatureeventhoughcooperatingalwaysrunriskexploitedfree-ridersPopulationstructureeffectivelypromotesgiventhresholdlevelalreadyreachedHowevercanemergerelybenefitprovidedcooperatorsstillpuzzlinginvestigatewell-definedgenericsituationbasedtypicalpopulationsregularlyformnewcoloniesanalysetwoevolutionarymechanismsfavouringcooperativestudystrengthdependinginoculationsizelengthcycleparticularfindbottlenecksexponentialstronglyincreasesurvivalfixationprobabilitiescooperatorfree-ridingemergenceevolutionpublicgood

Similar Articles

Cited By