The duality of spatial death-birth and birth-death processes and limitations of the isothermal theorem.

Kamran Kaveh, Natalia L Komarova, Mohammad Kohandel
Author Information
  1. Kamran Kaveh: Department of Applied Mathematics , University of Waterloo, Waterloo , Ontario, Canada N2L 3G1.
  2. Natalia L Komarova: Department of Mathematics , University of California Irvine , Irvine, CA 92697, USA ; Department of Ecology and Evolutionary Biology , University of California Irvine , Irvine, CA 92697, USA.
  3. Mohammad Kohandel: Department of Applied Mathematics , University of Waterloo, Waterloo , Ontario, Canada N2L 3G1.

Abstract

Evolutionary models on graphs, as an extension of the Moran process, have two major implementations: birth-death (BD) models (or the invasion process) and death-birth (DB) models (or voter models). The isothermal theorem states that the fixation probability of mutants in a large group of graph structures (known as isothermal graphs, which include regular graphs) coincides with that for the mixed population. This result has been proved by Lieberman et al. (2005 Nature 433, 312-316. (doi:10.1038/nature03204)) in the case of BD processes, where mutants differ from the wild-types by their birth rate (and not by their death rate). In this paper, we discuss to what extent the isothermal theorem can be formulated for DB processes, proving that it only holds for mutants that differ from the wild-type by their death rate (and not by their birth rate). For more general BD and DB processes with arbitrary birth and death rates of mutants, we show that the fixation probabilities of mutants are different from those obtained in the mass-action populations. We focus on spatial lattices and show that the difference between BD and DB processes on one- and two-dimensional lattices is non-small even for large population sizes. We support these results with a generating function approach that can be generalized to arbitrary graph structures. Finally, we discuss several biological applications of the results.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051913 [PMID: 21230506]
  2. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  3. Nat Rev Cancer. 2014 Jul;14(7):468-80 [PMID: 24920463]
  4. Biol Direct. 2010 Apr 20;5:21 [PMID: 20406439]
  5. Phys Rev Lett. 2006 Dec 22;97(25):258103 [PMID: 17280398]
  6. Genetics. 1964 Apr;49(4):561-76 [PMID: 17248204]
  7. Cell. 2000 Jan 7;100(1):57-70 [PMID: 10647931]
  8. Proc Biol Sci. 1999 Apr 22;266(1421):859-67 [PMID: 10343409]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  10. Proc Biol Sci. 2006 Sep 7;273(1598):2249-56 [PMID: 16901846]
  11. PLoS One. 2010 Jun 30;5(6):e11187 [PMID: 20614025]
  12. Theor Popul Biol. 1974 Apr;5(2):148-54 [PMID: 4825532]
  13. Biosystems. 2013 Apr;112(1):49-54 [PMID: 23567507]
  14. Science. 2013 Nov 22;342(6161):995-8 [PMID: 24264992]
  15. Genetics. 1974 Feb;76(2):367-77 [PMID: 4822471]
  16. J Theor Biol. 2014 May 21;349:66-73 [PMID: 24462897]
  17. PLoS Comput Biol. 2014 Apr 24;10(4):e1003567 [PMID: 24762474]
  18. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 2):046707 [PMID: 19518380]
  20. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  21. PLoS One. 2013;8(1):e54639 [PMID: 23382931]
  22. Rev Mod Phys. 2010 Jun 1;82(2):1691-1718 [PMID: 21072144]
  23. Biosystems. 2012 Feb;107(2):66-80 [PMID: 22020107]
  24. Bull Math Biol. 2006 Oct;68(7):1573-99 [PMID: 16832734]
  25. J Theor Biol. 2006 Nov 7;243(1):86-97 [PMID: 16860343]
  26. Epidemics. 2015 Mar;10:54-7 [PMID: 25843384]
  27. J Theor Biol. 1998 Aug 21;193(4):631-648 [PMID: 9750181]
  28. J Theor Biol. 2006 Dec 7;243(3):437-43 [PMID: 16901509]
  29. Nat Med. 2004 Aug;10 (8):789-99 [PMID: 15286780]

Word Cloud

Created with Highcharts 10.0.0mutantsprocessesmodelsBDDBisothermalrategraphsprocesstheorembirthdeathbirth-deathdeath-birthfixationlargegraphstructurespopulationdifferdiscusscanarbitraryshowspatiallatticesresultsEvolutionaryextensionMorantwomajorimplementations:invasionvoterstatesprobabilitygroupknownincluderegularcoincidesmixedresultprovedLiebermanetal2005Nature433312-316doi:101038/nature03204casewild-typespaperextentformulatedprovingholdswild-typegeneralratesprobabilitiesdifferentobtainedmass-actionpopulationsfocusdifferenceone-two-dimensionalnon-smallevensizessupportgeneratingfunctionapproachgeneralizedFinallyseveralbiologicalapplicationsdualitylimitationsevolutionarydynamicsnumericalsimulationsstochastic

Similar Articles

Cited By