Impact of plant domestication on rhizosphere microbiome assembly and functions.

Juan E Pérez-Jaramillo, Rodrigo Mendes, Jos M Raaijmakers
Author Information
  1. Juan E Pérez-Jaramillo: Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands.
  2. Rodrigo Mendes: Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340 - km 127.5, Jaguariúna, 13820-000, Brazil.
  3. Jos M Raaijmakers: Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands. j.raaijmakers@nioo.knaw.nl.

Abstract

The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the underlying mechanisms and plant traits that drive microbiome assembly and functions are largely unknown. Domestication of plant species has substantially contributed to human civilization, but also caused a strong decrease in the genetic diversity of modern crop cultivars that may have affected the ability of plants to establish beneficial associations with rhizosphere microbes. Here, we review how plants shape the rhizosphere microbiome and how domestication may have impacted rhizosphere microbiome assembly and functions via habitat expansion and via changes in crop management practices, root exudation, root architecture, and plant litter quality. We also propose a "back to the roots" framework that comprises the exploration of the microbiome of indigenous plants and their native habitats for the identification of plant and microbial traits with the ultimate goal to reinstate beneficial associations that may have been undermined during plant domestication.

Keywords

References

  1. Am J Bot. 2013 Sep;100(9):1692-705 [PMID: 23956051]
  2. Annu Rev Entomol. 2015 Jan 7;60:35-58 [PMID: 25341108]
  3. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  4. Nature. 2009 Feb 12;457(7231):843-8 [PMID: 19212403]
  5. ISME J. 2008 Dec;2(12):1221-30 [PMID: 18754043]
  6. Plant Physiol. 2008 Nov;148(3):1547-56 [PMID: 18820082]
  7. J Biosci. 2014 Jun;39(3):513-7 [PMID: 24845514]
  8. Appl Environ Microbiol. 2001 Oct;67(10):4742-51 [PMID: 11571180]
  9. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  10. Mol Biol Evol. 2007 Jul;24(7):1506-17 [PMID: 17443011]
  11. Curr Opin Plant Biol. 2010 Aug;13(4):378-87 [PMID: 20558098]
  12. PLoS One. 2011;6(8):e23321 [PMID: 21886785]
  13. Plant Cell. 2008 Feb;20(2):482-94 [PMID: 18296628]
  14. PLoS One. 2014 Jun 23;9(6):e100709 [PMID: 24955843]
  15. Theor Appl Genet. 2008 Nov;117(7):1093-106 [PMID: 18663425]
  16. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):988-93 [PMID: 23271810]
  17. World J Microbiol Biotechnol. 2012 Feb;28(2):615-26 [PMID: 22806857]
  18. Plant Physiol. 2013 Apr;161(4):1806-19 [PMID: 23426195]
  19. New Phytol. 2013 Jan;197(1):300-313 [PMID: 23126683]
  20. Front Microbiol. 2014 Aug 26;5:415 [PMID: 25206350]
  21. Front Plant Sci. 2013 May 30;4:165 [PMID: 23755059]
  22. Plant Cell Environ. 2009 Jun;32(6):666-81 [PMID: 19143988]
  23. Proc Biol Sci. 2012 Mar 22;279(1731):1122-30 [PMID: 21920983]
  24. Plant Cell Environ. 2010 Apr;33(4):670-85 [PMID: 20040064]
  25. Evolution. 2015 Mar;69(3):631-42 [PMID: 25565449]
  26. FEMS Microbiol Rev. 2013 Sep;37(5):634-63 [PMID: 23790204]
  27. Mol Plant Microbe Interact. 2002 Nov;15(11):1173-80 [PMID: 12423023]
  28. Oecologia. 1988 Dec;77(4):537-543 [PMID: 28311275]
  29. J Exp Bot. 2009;60(6):1729-42 [PMID: 19342429]
  30. Sci Rep. 2013 Oct 07;3:2875 [PMID: 24096732]
  31. Can J Microbiol. 2014 Oct;60(10):687-90 [PMID: 25264806]
  32. Appl Environ Microbiol. 2011 Apr;77(8):2807-12 [PMID: 21357434]
  33. Plant Signal Behav. 2009 Aug;4(8):777-80 [PMID: 19820328]
  34. Trends Plant Sci. 2014 Feb;19(2):90-8 [PMID: 24332225]
  35. Front Microbiol. 2014 Jun 04;5:148 [PMID: 24926286]
  36. Nature. 2005 Apr 7;434(7034):732-7 [PMID: 15815622]
  37. Trends Plant Sci. 2007 May;12(5):224-30 [PMID: 17416544]
  38. Plant Physiol. 2014 Oct;166(2):689-700 [PMID: 25059708]
  39. ISME J. 2013 Dec;7(12):2248-58 [PMID: 23864127]
  40. Science. 1997 Jul 25;277(5325):504-9 [PMID: 20662149]
  41. FEMS Microbiol Ecol. 2014 May;88(2):424-35 [PMID: 24597529]
  42. Phytopathology. 1997 Jul;87(7):720-9 [PMID: 18945094]
  43. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  44. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E788-96 [PMID: 22393017]
  45. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4197-201 [PMID: 11607544]
  46. Environ Microbiol. 2008 Nov;10(11):3082-92 [PMID: 18393993]
  47. Genome Biol. 2013 Jun 25;14(6):209 [PMID: 23805896]
  48. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9885-90 [PMID: 15161968]
  49. FEMS Microbiol Ecol. 2011 Sep;77(3):600-10 [PMID: 21658090]
  50. FEMS Microbiol Ecol. 2011 Mar;75(3):497-506 [PMID: 21204872]
  51. Annu Rev Phytopathol. 1999;37:473-491 [PMID: 11701832]
  52. J Appl Genet. 2007;48(4):337-45 [PMID: 17998590]
  53. Environ Microbiol. 2004 Mar;6(3):301-12 [PMID: 14871213]
  54. New Phytol. 2013 Apr;198(2):504-513 [PMID: 23356416]
  55. Curr Biol. 2012 Dec 4;22(23):2242-6 [PMID: 23122843]
  56. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  57. Environ Microbiol. 2014 Sep;16(9):2804-14 [PMID: 24588973]
  58. Genetics. 2006 Jun;173(2):975-83 [PMID: 16547098]
  59. Plant Physiol. 2012 Nov;160(3):1642-61 [PMID: 22972705]
  60. ISME J. 2007 Dec;1(8):763-5 [PMID: 18059499]
  61. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  62. Cell Host Microbe. 2015 Mar 11;17(3):392-403 [PMID: 25732064]
  63. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  64. Mol Plant Microbe Interact. 2011 Mar;24(3):352-8 [PMID: 21077773]
  65. New Phytol. 2004 Sep;163(3):459-480 [PMID: 33873745]
  66. J Chem Ecol. 2013 Feb;39(2):283-97 [PMID: 23397456]
  67. J Biol Chem. 2013 Feb 15;288(7):4502-12 [PMID: 23293028]
  68. Trends Plant Sci. 2010 Sep;15(9):529-37 [PMID: 20541451]
  69. Science. 2013 Nov 1;342(6158):621-4 [PMID: 24179225]
  70. Curr Opin Biotechnol. 2009 Dec;20(6):642-50 [PMID: 19875278]
  71. Appl Environ Microbiol. 2001 Dec;67(12):5849-54 [PMID: 11722945]
  72. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  73. ScientificWorldJournal. 2013 May 15;2013:548246 [PMID: 23766697]
  74. Cell. 2006 Dec 29;127(7):1309-21 [PMID: 17190597]
  75. Appl Environ Microbiol. 2010 Jun;76(11):3675-84 [PMID: 20363788]
  76. Environ Microbiol. 2014 Jul;16(7):2157-67 [PMID: 23962203]
  77. BMC Genet. 2014 Oct 07;15:107 [PMID: 25286820]
  78. PLoS One. 2012;7(4):e35498 [PMID: 22545111]
  79. Mol Ecol. 2004 Aug;13(8):2435-44 [PMID: 15245415]

MeSH Term

Crops, Agricultural
Genotype
Microbiota
Plant Roots
Plants
Rhizosphere

Word Cloud

Created with Highcharts 10.0.0microbiomeplantrhizosphereplantsdomesticationassemblyfunctionsmaymicrobialtraitsalsocropbeneficialassociationsviarootpivotalhealthgrowthprovidingdefencepestsdiseasesfacilitatingnutrientacquisitionhelpingwithstandabioticstressesPlantscanactivelyrecruitmemberssoilcommunitypositivefeedbacksunderlyingmechanismsdrivelargelyunknownDomesticationspeciessubstantiallycontributedhumancivilizationcausedstrongdecreasegeneticdiversitymoderncultivarsaffectedabilityestablishmicrobesreviewshapeimpactedhabitatexpansionchangesmanagementpracticesexudationarchitecturelitterqualitypropose"backroots"frameworkcomprisesexplorationindigenousnativehabitatsidentificationultimategoalreinstateunderminedImpactPlantPlant–microbeinteractionsRhizosphereWildrelatives

Similar Articles

Cited By (215)