An immuno-epidemiological model for Johne's disease in cattle.

Maia Martcheva, Suzanne Lenhart, Shigetoshi Eda, Don Klinkenberg, Eiichi Momotani, Judy Stabel
Author Information
  1. Maia Martcheva: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL, 32611, USA. maia@ufl.edu.
  2. Suzanne Lenhart: Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA. lenhart@math.utk.edu.
  3. Shigetoshi Eda: Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA. seda@utk.edu.
  4. Don Klinkenberg: Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584CL, The Netherlands. D.Klinkenberg@uu.nl.
  5. Eiichi Momotani: Department of Human-care, Tohto College of Health Sciences, Tokyo Medical and Dental University, Fukaya, Saitama, 366-0052, Japan. eiichimomotani@gmail.com.
  6. Judy Stabel: National Animal Disease Center, USDA, Ames, IA, 50010, USA. judy.stabel@ars.usda.gov.

Abstract

To better understand the mechanisms involved in the dynamics of Johne's disease in dairy cattle, this paper illustrates a novel way to link a within-host model for Mycobacterium avium ssp. paratuberculosis with an epidemiological model. The underlying variable in the within-host model is the time since infection. Two compartments, infected macrophages and T cells, of the within-host model feed into the epidemiological model through the direct transmission rate, disease-induced mortality rate, the vertical transmission rate, and the shedding of MAP into the environment. The epidemiological reproduction number depends on the within-host bacteria load in a complex way, exhibiting multiple peaks. A possible mechanism to account for the switch in shedding patterns of the bacteria in this disease is included in the within-host model, and its effect can be seen in the epidemiological reproduction model.

References

  1. J Immunol. 2001 Feb 1;166(3):1951-67 [PMID: 11160244]
  2. Evolution. 2002 Feb;56(2):213-23 [PMID: 11926490]
  3. J Theor Biol. 2002 Oct 7;218(3):289-308 [PMID: 12381431]
  4. Am J Vet Res. 1992 Aug;53(8):1312-4 [PMID: 1510305]
  5. Theor Popul Biol. 2006 Mar;69(2):145-53 [PMID: 16198387]
  6. Infect Immun. 2007 May;75(5):2110-9 [PMID: 17296749]
  7. Vet J. 2009 Jan;179(1):60-9 [PMID: 17928247]
  8. Vet Immunol Immunopathol. 2009 Mar 15;128(1-3):44-52 [PMID: 19022505]
  9. Vet Microbiol. 2009 May 12;136(3-4):306-13 [PMID: 19135813]
  10. Vet J. 2010 Apr;184(1):37-44 [PMID: 19246220]
  11. J Dairy Sci. 2009 Jun;92(6):2653-61 [PMID: 19447998]
  12. PLoS Comput Biol. 2009 Oct;5(10):e1000536 [PMID: 19847288]
  13. J Dairy Sci. 2010 Aug;93(8):3513-24 [PMID: 20655419]
  14. Prev Vet Med. 2011 Jan 1;98(1):10-8 [PMID: 21030097]
  15. Clin Vaccine Immunol. 2011 Mar;18(3):393-405 [PMID: 21228140]
  16. Immunobiology. 2011 Jul;216(7):840-6 [PMID: 21281979]
  17. Epidemiol Infect. 2012 Feb;140(2):231-46 [PMID: 21524342]
  18. J Vet Intern Med. 2012 Jan-Feb;26(1):32-45 [PMID: 22211394]
  19. J Dairy Sci. 2012 Jul;95(7):4141-52 [PMID: 22720971]
  20. Front Microbiol. 2012 Jul 20;3:215 [PMID: 22833736]
  21. J Biol Dyn. 2011 Mar;5(2):104-19 [PMID: 22873434]
  22. Prev Vet Med. 2013 Feb 1;108(2-3):148-58 [PMID: 22921715]
  23. Math Biosci. 2013 Jan;241(1):49-55 [PMID: 23041478]
  24. Trop Anim Health Prod. 2013 Feb;45(2):351-66 [PMID: 23054804]
  25. PLoS One. 2013 Apr 29;8(4):e63009 [PMID: 23658660]
  26. Prev Vet Med. 2013 Nov 1;112(3-4):203-12 [PMID: 24034815]
  27. PLoS One. 2013 Oct 22;8(10):e76636 [PMID: 24167547]
  28. Crit Rev Microbiol. 2015;41(4):488-507 [PMID: 24670062]
  29. Biophys J. 2014 Apr 15;106(8):1780-91 [PMID: 24739177]
  30. Vet Res. 2015 Jun 19;46:63 [PMID: 26092036]
  31. Vet Res. 2015 Jun 19;46:61 [PMID: 26092382]
  32. PLoS One. 2016 Jan 25;11(1):e0146844 [PMID: 26808389]
  33. J Am Vet Med Assoc. 1989 May 15;194(10):1423-6 [PMID: 2722634]
  34. Vet Pathol. 1988 Mar;25(2):131-7 [PMID: 3363791]
  35. Vet Clin North Am Food Anim Pract. 1996 Jul;12(2):305-12 [PMID: 8828107]
  36. Am J Vet Res. 1995 Oct;56(10):1322-4 [PMID: 8928949]

MeSH Term

Animals
Bacterial Shedding
Cattle
Cattle Diseases
Dairying
Feces
Female
Infectious Disease Transmission, Vertical
Models, Immunological
Paratuberculosis
Prevalence

Word Cloud

Created with Highcharts 10.0.0modelwithin-hostepidemiologicaldiseaserateJohne'scattlewaytransmissionsheddingreproductionbacteriabetterunderstandmechanismsinvolveddynamicsdairypaperillustratesnovellinkMycobacteriumaviumsspparatuberculosisunderlyingvariabletimesinceinfectionTwocompartmentsinfectedmacrophagesTcellsfeeddirectdisease-inducedmortalityverticalMAPenvironmentnumberdependsloadcomplexexhibitingmultiplepeakspossiblemechanismaccountswitchpatternsincludedeffectcanseenimmuno-epidemiological

Similar Articles

Cited By (8)