Multivariate meta-analysis using individual participant data.

R D Riley, M J Price, D Jackson, M Wardle, F Gueyffier, J Wang, J A Staessen, I R White
Author Information
  1. R D Riley: Research Institute of Primary Care and Health Sciences, Keele University, Staffordshire, ST5 5BG, UK.
  2. M J Price: School of Health and Population Sciences, Public Health Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
  3. D Jackson: MRC Biostatistics Unit, Cambridge, UK.
  4. M Wardle: School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
  5. F Gueyffier: UMR5558, CNRS and Lyon 1 Claude Bernard University, Lyon, France.
  6. J Wang: Centre for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025, China.
  7. J A Staessen: Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
  8. I R White: MRC Biostatistics Unit, Cambridge, UK.

Abstract

When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models.

Keywords

References

  1. Stat Med. 2008 May 20;27(11):1870-93 [PMID: 18069721]
  2. Stat Med. 2008 Sep 20;27(21):4279-300 [PMID: 18416445]
  3. Lancet. 1997 Sep 13;350(9080):757-64 [PMID: 9297994]
  4. Res Synth Methods. 2014 Jun;5(2):162-85 [PMID: 26052655]
  5. Stat Med. 2010 May 30;29(12):1282-97 [PMID: 19408255]
  6. Stat Med. 1993 Feb;12(3-4):241-8 [PMID: 8456209]
  7. Stat Med. 1996 Mar 15;15(5):537-57 [PMID: 8668877]
  8. Stat Med. 2005 Aug 15;24(15):2401-28 [PMID: 16015676]
  9. J Hypertens. 1998 Dec;16(12 Pt 1):1823-9 [PMID: 9869017]
  10. Stat Med. 2003 Jul 30;22(14):2309-33 [PMID: 12854095]
  11. Value Health. 2010 Dec;13(8):976-83 [PMID: 20825617]
  12. Stat Med. 2008 Feb 10;27(3):418-34 [PMID: 17477434]
  13. Stat Med. 2002 Feb 15;21(3):371-87 [PMID: 11813224]
  14. Clin Trials. 2009 Feb;6(1):16-27 [PMID: 19254930]
  15. Biostatistics. 2008 Jan;9(1):172-86 [PMID: 17626226]
  16. BMJ. 2010;340:c221 [PMID: 20139215]
  17. Stat Med. 2006 Jun 30;25(12):2136-59 [PMID: 16217847]
  18. Am J Epidemiol. 2012 Jan 1;175(1):66-73 [PMID: 22135359]
  19. Stat Med. 2011 Jan 30;30(2):140-51 [PMID: 20963750]
  20. Control Clin Trials. 1986 Sep;7(3):177-88 [PMID: 3802833]
  21. Stat Med. 2014 Apr 30;33(9):1441-59 [PMID: 24285290]
  22. Lancet Oncol. 2009 Apr;10(4):341-50 [PMID: 19246242]
  23. Res Synth Methods. 2012 Jun;3(2):80-97 [PMID: 26062083]
  24. Biometrics. 2012 Dec;68(4):1278-84 [PMID: 22551393]
  25. Epidemiol Rev. 1987;9:1-30 [PMID: 3678409]
  26. Stat Med. 2001 Aug 15;20(15):2219-41 [PMID: 11468761]
  27. BMC Med Res Methodol. 2012;12:121 [PMID: 22883206]
  28. Stat Med. 2014 Jan 15;33(1):17-30 [PMID: 23873593]
  29. Biostatistics. 2000 Sep;1(3):231-46 [PMID: 12933506]
  30. Health Care Manag Sci. 2008 Jun;11(2):121-31 [PMID: 18581818]
  31. Stat Med. 2011 Sep 10;30(20):2481-98 [PMID: 21268052]
  32. Stat Med. 2008 Sep 30;27(22):4381-96 [PMID: 18465839]
  33. Biom J. 2010 Feb;52(1):85-94 [PMID: 20140900]
  34. Int J Epidemiol. 2010 Oct;39(5):1345-59 [PMID: 20439481]
  35. Res Synth Methods. 2010 Jan;1(1):2-19 [PMID: 26056090]
  36. Stat Med. 2008 Feb 28;27(5):651-69 [PMID: 17514698]
  37. Biostatistics. 2000 Mar;1(1):49-67 [PMID: 12933525]
  38. Stat Med. 2013 Mar 30;32(7):1191-205 [PMID: 23208849]
  39. Stat Med. 2002 Feb 28;21(4):589-624 [PMID: 11836738]
  40. Biostatistics. 2007 Apr;8(2):239-51 [PMID: 16698768]
  41. Stat Med. 2014 Jun 15;33(13):2275-87 [PMID: 24918246]
  42. PLoS Med. 2013;10(2):e1001381 [PMID: 23393430]
  43. Cancer J. 2009 Sep-Oct;15(5):421-5 [PMID: 19826362]
  44. Stat Med. 2013 Jul 30;32(17):2911-34 [PMID: 23386217]
  45. J Clin Epidemiol. 2008 Jan;61(1):41-51 [PMID: 18083461]
  46. Lancet. 1985 Jun 15;1(8442):1349-54 [PMID: 2861311]
  47. Therapie. 1995 Jul-Aug;50(4):353-62 [PMID: 7482389]
  48. Stat Med. 2012 Sep 10;31(20):2179-95 [PMID: 22532016]
  49. Clin Trials. 2012 Oct;9(5):610-20 [PMID: 22872546]
  50. Stat Med. 2009 Apr 15;28(8):1218-37 [PMID: 19222087]
  51. Res Synth Methods. 2012 Jun;3(2):111-25 [PMID: 26062085]
  52. Stat Med. 2013 Mar 15;32(6):914-30 [PMID: 22987606]
  53. Am J Epidemiol. 1992 Jun 1;135(11):1301-9 [PMID: 1626547]
  54. Hypertension. 2005 May;45(5):907-13 [PMID: 15837826]
  55. Stat Med. 2011 Dec 10;30(28):3341-60 [PMID: 21953493]
  56. Stat Med. 2000 Jan 30;19(2):141-60 [PMID: 10641021]
  57. Stat Med. 2010 Dec 20;29(29):3046-67 [PMID: 20827667]
  58. Biometrics. 1994 Dec;50(4):989-1002 [PMID: 7787011]
  59. Stat Med. 2012 Dec 20;31(29):3805-20 [PMID: 22763950]
  60. Stat Med. 2007 Jul 10;26(15):2982-99 [PMID: 17195960]
  61. Stat Med. 2011 Oct 30;30(24):2911-29 [PMID: 21830230]
  62. Biom J. 2013 Mar;55(2):231-45 [PMID: 23401213]
  63. BMC Med Res Methodol. 2009;9:73 [PMID: 19903336]
  64. Stat Med. 1997 Sep 15;16(17):1965-82 [PMID: 9304767]
  65. Stat Med. 2007 May 20;26(11):2389-430 [PMID: 17031868]
  66. Biostatistics. 2015 Jan;16(1):84-97 [PMID: 24992934]
  67. BMC Med Res Methodol. 2012;12:34 [PMID: 22443286]
  68. Stat Med. 2005 Jul 30;24(14):2241-54 [PMID: 15887296]
  69. Stat Med. 2013 Aug 15;32(18):3158-80 [PMID: 23307585]
  70. Stat Med. 2013 Sep 30;32(22):3926-43 [PMID: 23630081]
  71. J Dent Res. 1995 Apr;74(4):1030-9 [PMID: 7782533]
  72. Stat Med. 1993 Dec 30;12(24):2273-84 [PMID: 7907813]
  73. Stat Med. 2013 Jul 20;32(16):2747-66 [PMID: 23303608]
  74. BMC Med Res Methodol. 2007;7:3 [PMID: 17222330]
  75. J Clin Epidemiol. 2005 Oct;58(10):982-90 [PMID: 16168343]
  76. Stat Med. 2012 Dec 20;31(29):3821-39 [PMID: 22807043]
  77. Clin Trials. 2005;2(3):209-17 [PMID: 16279144]
  78. Stat Med. 2014 Feb 20;33(4):541-54 [PMID: 23996351]
  79. Stat Med. 2011 Sep 10;30(20):2504-6; discussion 2509-10 [PMID: 24293793]
  80. Stat Med. 2007 Jan 15;26(1):78-97 [PMID: 16526010]
  81. Stat Methods Med Res. 2015 Dec;24(6):711-29 [PMID: 22025414]
  82. J Clin Epidemiol. 2007 May;60(5):431-9 [PMID: 17419953]
  83. Stat Med. 2012 Dec 10;31(28):3516-36 [PMID: 22764016]

Grants

  1. MC_EX_MR/M025012/1/Medical Research Council
  2. MR/J013595/2/Medical Research Council
  3. MC_U105260558/Medical Research Council
  4. U105260558/Medical Research Council
  5. MR/J013595/1/Medical Research Council

MeSH Term

Bayes Theorem
Computer Simulation
Data Interpretation, Statistical
Humans
Meta-Analysis as Topic
Models, Statistical
Multivariate Analysis
Outcome Assessment, Health Care
Research Design
Software

Word Cloud

Created with Highcharts 10.0.0meta-analysisoutcomesdatamultivariatemultipleindividualjointwithin-studycorrelationsparticipantIPDacrossallowssynthesisfitusingcontinuousmethodsbinarysurvivalmodelscombiningresultsrelatedstudiescorrelatedeffectestimatesJointcanimproveefficiencyseparateunivariatesynthesesmayreduceselectiveoutcomereportingbiasesenablesinferencescommonissueneededmodelunknownpublishedreportsHoweverprovisioncalculateddirectlyillustrateuseestimatelinearregressionbootstrappingmixed10hypertensiontrialsshowenableaddressnovelclinicalquestionstreatment-covariateinteractionsadjustedrisk/prognosticfactoreffectslongitudinalprognosticmultiparametertreatmentcomparisonsfrequentistBayesianapproachesappliedexamplesoftwarecodeprovidedderiveMultivariatebivariatecorrelationpatient

Similar Articles

Cited By