Universal far-from-equilibrium dynamics of a holographic superconductor.

Julian Sonner, Adolfo Del Campo, Wojciech H Zurek
Author Information
  1. Julian Sonner: CTP, Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
  2. Adolfo Del Campo: 1] Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA [2] Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA [3] Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  3. Wojciech H Zurek: Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Abstract

Symmetry-breaking phase transitions are an example of non-equilibrium processes that require real-time treatment, a major challenge in strongly coupled systems without long-lived quasiparticles. Holographic duality provides such an approach by mapping strongly coupled field theories in D dimensions into weakly coupled quantum gravity in D+1 anti-de Sitter spacetime. Here we use holographic duality to study the formation of topological defects-winding numbers-in the course of a superconducting transition in a strongly coupled theory in a 1D ring. When the system undergoes the transition on a given quench time, the condensate builds up with a delay that can be deduced using the Kibble-Zurek mechanism from the quench time and the universality class of the theory, as determined from the quasinormal mode spectrum of the dual model. Typical winding numbers deposited in the ring exhibit a universal fractional power law dependence on the quench time, also predicted by the Kibble-Zurek Mechanism.

References

  1. Phys Rev Lett. 2012 Oct 26;109(17):175301 [PMID: 23215197]
  2. Phys Rev Lett. 2008 Jul 18;101(3):031601 [PMID: 18764244]
  3. Phys Rev Lett. 2011 Jun 3;106(22):227203 [PMID: 21702628]
  4. Science. 2013 Jul 26;341(6144):368-72 [PMID: 23888034]
  5. Sci Rep. 2012;2:352 [PMID: 22500209]
  6. Phys Rev Lett. 1992 Sep 28;69(13):1849-1851 [PMID: 10046331]
  7. Phys Rev Lett. 2006 Apr 7;96(13):136801 [PMID: 16712015]
  8. Phys Rev Lett. 2012 Aug 31;109(9):091601 [PMID: 23002819]
  9. Phys Rev Lett. 2011 Dec 2;107(23):230402 [PMID: 22182069]
  10. Phys Rev Lett. 2013 Jan 4;110(1):015301 [PMID: 23383803]

Word Cloud

Created with Highcharts 10.0.0coupledstronglyquenchtimedualityholographictransitiontheoryringKibble-ZurekSymmetry-breakingphasetransitionsexamplenon-equilibriumprocessesrequirereal-timetreatmentmajorchallengesystemswithoutlong-livedquasiparticlesHolographicprovidesapproachmappingfieldtheoriesDdimensionsweaklyquantumgravityD+1anti-deSitterspacetimeusestudyformationtopologicaldefects-windingnumbers-incoursesuperconducting1DsystemundergoesgivencondensatebuildsdelaycandeducedusingmechanismuniversalityclassdeterminedquasinormalmodespectrumdualmodelTypicalwindingnumbersdepositedexhibituniversalfractionalpowerlawdependencealsopredictedMechanismUniversalfar-from-equilibriumdynamicssuperconductor

Similar Articles

Cited By

No available data.