Integration of RNA-seq and proteomics data with genomics for improved genome annotation in Apicomplexan parasites.

Natalie C Silmon de Monerri, Louis M Weiss
Author Information
  1. Natalie C Silmon de Monerri: Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA.
  2. Louis M Weiss: Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA.

Abstract

While high quality genomic sequence data is available for many pathogenic organisms, the corresponding gene annotations are often plagued with inaccuracies that can hinder research that utilizes such genomic data. Experimental validation of gene models is clearly crucial in improving such gene annotations; the field of proteogenomics is an emerging area of research wherein proteomic data is applied to testing and improving genetic models. Krishna et al. [Proteomics 2015, 15, 2618-2628] investigated whether incorporation of RNA-seq data into proteogenomics analyses can contribute significantly to validation studies of genome annotation, in two important parasitic organisms Toxoplasma gondii and Neospora caninum. They applied a systematic approach to combine new and previously published proteomics data from T. gondii and N. caninum with transcriptomics data, leading to substantially improved gene models for these organisms. This study illustrates the importance of incorporating experimental data from both proteomics and RNA-seq studies into routine genome annotation protocols.

Keywords

References

  1. Nucleic Acids Res. 2013 Jan;41(Database issue):D684-91 [PMID: 23175615]
  2. PLoS Comput Biol. 2007 Mar 16;3(3):e54 [PMID: 17367206]
  3. PLoS One. 2014;9(11):e111297 [PMID: 25393307]
  4. PLoS One. 2015;10(4):e0124473 [PMID: 25875305]
  5. BMC Genomics. 2015;16:66 [PMID: 25757795]
  6. Proteomics. 2015 Aug;15(15):2618-28 [PMID: 25867681]
  7. Nucleic Acids Res. 2003 Jan 1;31(1):234-6 [PMID: 12519989]
  8. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  9. BMC Genomics. 2012;13:696 [PMID: 23231500]
  10. Nucleic Acids Res. 2008 Jan;36(Database issue):D553-6 [PMID: 18003657]
  11. Genome Biol. 2008;9(7):R116 [PMID: 18644147]
  12. PLoS One. 2008;3(12):e3899 [PMID: 19065262]
  13. BMC Genomics. 2009;10:312 [PMID: 19602295]
  14. Mol Cell Proteomics. 2011 Jan;10(1):M110.000745 [PMID: 20935347]
  15. PLoS Pathog. 2012;8(3):e1002567 [PMID: 22457617]
  16. J Parasitol. 2012 Apr;98(2):445-7 [PMID: 22010783]
  17. Parasitology. 2012 Aug;139(9):1103-18 [PMID: 22828391]

Grants

  1. R01 AI095094/NIAID NIH HHS
  2. R56 AI093220/NIAID NIH HHS
  3. BB/G010781/1/Biotechnology and Biological Sciences Research Council
  4. R01AI93220/NIAID NIH HHS
  5. BB/H024654/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Genomics
Neospora
Proteomics
Toxoplasma

Word Cloud

Created with Highcharts 10.0.0datageneorganismsmodelsRNA-seqgenomeannotationproteomicsgenomicannotationscanresearchvalidationimprovingproteogenomicsappliedstudiesToxoplasmagondiiNeosporacaninumimprovedhighqualitysequenceavailablemanypathogeniccorrespondingoftenplaguedinaccuracieshinderutilizesExperimentalclearlycrucialfieldemergingareawhereinproteomictestinggeneticKrishnaetal[Proteomics2015152618-2628]investigatedwhetherincorporationanalysescontributesignificantlytwoimportantparasiticsystematicapproachcombinenewpreviouslypublishedTNtranscriptomicsleadingsubstantiallystudyillustratesimportanceincorporatingexperimentalroutineprotocolsIntegrationgenomicsApicomplexanparasitesApicomplexaProteogenomicsProtozoa

Similar Articles

Cited By