Effects of bisphenol A on chlorophyll fluorescence in five plants.

Jiazhi Zhang, Lihong Wang, Man Li, Liya Jiao, Qing Zhou, Xiaohua Huang
Author Information
  1. Jiazhi Zhang: State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
  2. Lihong Wang: State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
  3. Man Li: State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
  4. Liya Jiao: State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
  5. Qing Zhou: State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China. qingzhou510@yahoo.com.
  6. Xiaohua Huang: Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China. huangxiaohuanjnu@yahoo.com.

Abstract

The aim of this study was to evaluate the effects of bisphenol A (BPA) on plant photosynthesis and determine whether the photosynthetic response to BPA exposure varies in different plants. Chlorophyll fluorescence techniques were used to investigate the effects of BPA on chlorophyll fluorescence parameters in tomato (Lycopersicum esculentum), lettuce (Lactuca sativa), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa) seedlings. Low-dose (1.5 or 3.0 mg L(-1)) BPA exposure improved photosystem II efficiency, increased the absorption and conversion efficiency of primary light energy, and accelerated photosynthetic electron transport in each plant, all of which increased photosynthesis. These effects weakened or disappeared after the withdrawal of BPA. High-dose (10.0 mg L(-1)) BPA exposure damaged the photosystem II reaction center, inhibited the photochemical reaction, and caused excess energy to be released as heat. These effects were more evident after the highest BPA dose (17.2 mg L(-1)), but they weakened after the withdrawal of BPA. The magnitude of BPA exposure effects on the chlorophyll fluorescence parameters in the five plants followed the order: lettuce > tomato > soybean > maize > rice. The opposite order was observed following the removal of BPA. In conclusion, the chlorophyll fluorescence response in plants exposed to BPA depended on BPA dose and plant species.

Keywords

References

  1. Nat Commun. 2014 Oct 31;5:5302 [PMID: 25358745]
  2. Planta. 2006 Apr;223(5):910-6 [PMID: 16292569]
  3. J Toxicol Environ Health A. 2009;72(21-22):1327-35 [PMID: 20077204]
  4. Environ Toxicol Chem. 2014 Nov;33(11):2455-62 [PMID: 25113627]
  5. Int J Hyg Environ Health. 2011 Sep;214(5):339-47 [PMID: 21570349]
  6. Mutat Res. 2013 Jan 20;750(1-2):111-20 [PMID: 23174415]
  7. J Integr Plant Biol. 2014 Jul;56(7):695-708 [PMID: 24521148]
  8. Photosynth Res. 1990 Sep;25(3):213-24 [PMID: 24420351]
  9. Environ Sci Pollut Res Int. 2013 Dec;20(12):8484-90 [PMID: 23649602]
  10. Sci Total Environ. 2014 Nov 1;497-498:585-593 [PMID: 25169873]
  11. Endocr Rev. 2009 Feb;30(1):75-95 [PMID: 19074586]
  12. Ecotoxicol Environ Saf. 2015 Jun;116:59-67 [PMID: 25768423]
  13. Plant Biol (Stuttg). 2011 Jan;13(1):209-17 [PMID: 21143743]
  14. Protoplasma. 2011 Oct;248(4):751-65 [PMID: 21104420]
  15. Science. 2002 Dec 13;298(5601):2149-53 [PMID: 12481128]
  16. Chemosphere. 1998 Apr;36(10):2149-73 [PMID: 9566294]
  17. BMC Plant Biol. 2015 Mar 08;15:81 [PMID: 25849896]
  18. Plant Physiol Biochem. 2007 Oct-Nov;45(10-11):851-7 [PMID: 17900916]
  19. Gen Comp Endocrinol. 2015 May 15;216:77-85 [PMID: 25863134]
  20. Environ Toxicol Chem. 2015 Jan;34(1):133-40 [PMID: 25320040]
  21. Chemosphere. 2001 Feb;42(4):415-8 [PMID: 11100793]
  22. J Toxicol Environ Health A. 2009;72(21-22):1285-91 [PMID: 20077198]
  23. Chemosphere. 2013 Jan;90(3):1274-80 [PMID: 23123119]
  24. Plant Cell Environ. 2014 May;37(5):1046-58 [PMID: 24004447]
  25. J Hazard Mater. 2013 Dec 15;263 Pt 2:458-66 [PMID: 24231322]
  26. Food Chem Toxicol. 2014 Oct;72:30-9 [PMID: 24964014]
  27. Environ Toxicol Chem. 2013 Jan;32(1):174-80 [PMID: 23109293]

MeSH Term

Benzhydryl Compounds
Chlorophyll
Environmental Pollutants
Fluorescence
Lactuca
Solanum lycopersicum
Phenols
Plant Leaves
Seedlings
Glycine max
Zea mays

Chemicals

Benzhydryl Compounds
Environmental Pollutants
Phenols
Chlorophyll
bisphenol A

Word Cloud

Created with Highcharts 10.0.0BPAfluorescenceeffectsplantsexposurechlorophyll>plantparametersmgL-1bisphenolphotosynthesisphotosyntheticresponseChlorophylltomatolettucesativasoybeanmaizerice0photosystemIIefficiencyincreasedenergyweakenedwithdrawalreactiondosefiveEffectsaimstudyevaluatedeterminewhethervariesdifferenttechniquesusedinvestigateLycopersicumesculentumLactucaGlycinemaxZeamaysOryzaseedlingsLow-dose153improvedabsorptionconversionprimarylightacceleratedelectrontransportdisappearedHigh-dose10damagedcenterinhibitedphotochemicalcausedexcessreleasedheatevidenthighest172magnitudefollowedorder:oppositeorderobservedfollowingremovalconclusionexposeddependedspeciesBisphenolFivePhotosynthetic

Similar Articles

Cited By