Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase.

Fangliang Zhang, Devang M Patel, Kristen Colavita, Irina Rodionova, Brian Buckley, David A Scott, Akhilesh Kumar, Svetlana A Shabalina, Sougata Saha, Mikhail Chernov, Andrei L Osterman, Anna Kashina
Author Information
  1. Fangliang Zhang: 1] University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA. [2] University of Miami School of Medicine, and Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA.
  2. Devang M Patel: University of Miami School of Medicine, and Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA.
  3. Kristen Colavita: University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA.
  4. Irina Rodionova: Sanford Burnham Medical Research Institute, La Jolla, California 92037, USA.
  5. Brian Buckley: Roswell Park Cancer Institute, Buffalo, New York, 14263, USA.
  6. David A Scott: Sanford Burnham Medical Research Institute, La Jolla, California 92037, USA.
  7. Akhilesh Kumar: University of Miami School of Medicine, and Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA.
  8. Svetlana A Shabalina: National Center for Biotechnology Information, NLM, NIH, Bethesda, Maryland 20894, USA.
  9. Sougata Saha: 1] University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA. [2] Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, India.
  10. Mikhail Chernov: Roswell Park Cancer Institute, Buffalo, New York, 14263, USA.
  11. Andrei L Osterman: Sanford Burnham Medical Research Institute, La Jolla, California 92037, USA.
  12. Anna Kashina: University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA.

Abstract

Protein arginylation is an emerging post-translational modification that targets a number of metabolic enzymes; however, the mechanisms and downstream effects of this modification are unknown. Here we show that lack of arginylation renders cells vulnerable to purine nucleotide synthesis inhibitors and affects the related glycine and serine biosynthesis pathways. We show that the purine nucleotide biosynthesis enzyme PRPS2 is selectively arginylated, unlike its close homologue PRPS1, and that arginylation of PRPS2 directly facilitates its biological activity. Moreover, selective arginylation of PRPS2 but not PRPS1 is regulated through a coding sequence-dependent mechanism that combines elements of mRNA secondary structure with lysine residues encoded near the N-terminus of PRPS1. This mechanism promotes arginylation-specific degradation of PRPS1 and selective retention of arginylated PRPS2 in vivo. We therefore demonstrate that arginylation affects both the activity and stability of a major metabolic enzyme.

References

  1. Science. 2002 Jul 5;297(5578):96-9 [PMID: 12098698]
  2. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 [PMID: 12824337]
  3. Eur J Clin Pharmacol. 1979 Jun 12;15(5):367-71 [PMID: 456409]
  4. Biochim Biophys Acta. 1989 Mar 1;1007(2):203-8 [PMID: 2537655]
  5. J Biol Chem. 1990 May 5;265(13):7464-71 [PMID: 2185248]
  6. Genomics. 1990 Nov;8(3):555-61 [PMID: 1962753]
  7. Clin Chim Acta. 1994 Jun;227(1-2):79-86 [PMID: 7955424]
  8. Biochemistry. 1997 Dec 2;36(48):14956-64 [PMID: 9398220]
  9. Bioinformatics. 2006 Jun 1;22(11):1317-24 [PMID: 16543280]
  10. Science. 2006 Jul 14;313(5784):192-6 [PMID: 16794040]
  11. Bioinformatics. 2006 Dec 1;22(23):2962-5 [PMID: 17046977]
  12. PLoS Biol. 2007 Oct;5(10):e258 [PMID: 17896865]
  13. Curr Protoc Nucleic Acid Chem. 2007 Mar;Chapter 11:Unit 11.2 [PMID: 18428968]
  14. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3083-8 [PMID: 19204287]
  15. Science. 2009 Apr 10;324(5924):255-8 [PMID: 19359587]
  16. PLoS Genet. 2010 Mar;6(3):e1000878 [PMID: 20300656]
  17. Science. 2010 Sep 17;329(5998):1534-7 [PMID: 20847274]
  18. Dev Biol. 2011 Oct 1;358(1):1-8 [PMID: 21784066]
  19. Chem Biol. 2011 Nov 23;18(11):1369-78 [PMID: 22118671]
  20. J Biol Chem. 2011 Dec 9;286(49):42626-34 [PMID: 21998308]
  21. J Cell Biol. 2012 Jun 11;197(6):819-36 [PMID: 22665520]
  22. J Mol Cell Cardiol. 2012 Sep;53(3):333-41 [PMID: 22626847]
  23. Nucleic Acids Res. 2013 Feb 1;41(4):2073-94 [PMID: 23293005]
  24. Cell Death Dis. 2013;4:e877 [PMID: 24157871]
  25. Cell. 2014 May 22;157(5):1088-103 [PMID: 24855946]

Grants

  1. R01 GM107333/NIGMS NIH HHS
  2. GM104003/NIGMS NIH HHS
  3. R01 GM108744/NIGMS NIH HHS
  4. GM107333/NIGMS NIH HHS
  5. /Intramural NIH HHS
  6. GM117984/NIGMS NIH HHS
  7. R01 GM104003/NIGMS NIH HHS

MeSH Term

Aminoacyltransferases
Animals
Arginine
Blotting, Western
Cell Line
Glycine
HEK293 Cells
Humans
Lysine
Mice
Mice, Knockout
Molecular Structure
Protein Processing, Post-Translational
Purine Nucleotides
RNA, Messenger
Reverse Transcriptase Polymerase Chain Reaction
Ribose-Phosphate Pyrophosphokinase
Serine
Ubiquitination

Chemicals

Purine Nucleotides
RNA, Messenger
Serine
Arginine
Aminoacyltransferases
arginyltransferase
PRPS1 protein, mouse
PRPS2 protein, mouse
Ribose-Phosphate Pyrophosphokinase
Lysine
Glycine

Word Cloud

Created with Highcharts 10.0.0arginylationPRPS2PRPS1purinenucleotidebiosynthesisactivitymodificationmetabolicshowaffectsenzymearginylatedselectivemechanismProteinemergingpost-translationaltargetsnumberenzymeshowevermechanismsdownstreameffectsunknownlackrenderscellsvulnerablesynthesisinhibitorsrelatedglycineserinepathwaysselectivelyunlikeclosehomologuedirectlyfacilitatesbiologicalMoreoverregulatedcodingsequence-dependentcombineselementsmRNAsecondarystructurelysineresiduesencodednearN-terminuspromotesarginylation-specificdegradationretentionvivothereforedemonstratestabilitymajorArginylationregulatesenhancingphosphoribosylpyrophosphatesynthase

Similar Articles

Cited By