The impact of health information technology on cancer care across the continuum: a systematic review and meta-analysis.

Will L Tarver, Nir Menachemi
Author Information
  1. Will L Tarver: Doctoral Candidate, Department of Health Care Organization and Policy, University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA wltarver@uab.edu.
  2. Nir Menachemi: Professor and Chair, Health Policy and Management, Indiana University, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA.

Abstract

INTRODUCTION: Health information technology (HIT) has the potential to play a significant role in the management of cancer. The purpose of this review is to identify and examine empirical studies that investigate the impact of HIT in cancer care on different levels of the care continuum.
METHODS: Electronic searches were performed in four academic databases. The authors used a three-step search process to identify 122 studies that met specific inclusion criteria. Next, a coding sheet was used to extract information from each included article to use in an analysis. Logistic regression was used to determine study-specific characteristics that were associated with positive findings.
RESULTS: Overall, 72.4% of published analyses reported a beneficial effect of HIT. Multivariate analysis found that the impact of HIT differs across the cancer continuum with studies targeting diagnosis and treatment being, respectively, 77 (P���=���.001) and 39 (P���=���.039) percentage points less likely to report a beneficial effect when compared to those targeting prevention. In addition, studies targeting HIT to patients were 31 percentage points less likely to find a beneficial effect than those targeting providers (P���=���.030). Lastly, studies assessing behavior change as an outcome were 41 percentage points less likely to find a beneficial effect (P���=���.006), while studies targeting decision making were 27 percentage points more likely to find a beneficial effect (P���=���.034).
CONCLUSION: Based on current evidence, HIT interventions seem to be more successful when targeting physicians, care in the prevention phase of the cancer continuum, and/or decision making. An agenda for future research is discussed.

Keywords

References

  1. WMJ. 2010 Dec;109(6):335-40 [PMID: 21287886]
  2. J Gen Intern Med. 2011 Feb;26(2):154-61 [PMID: 20872083]
  3. Health Aff (Millwood). 2010 Apr;29(4):614-21 [PMID: 20368590]
  4. Am J Public Health. 1995 May;85(5):722-6 [PMID: 7733438]
  5. Prim Care. 2012 Jun;39(2):327-44 [PMID: 22608869]
  6. CA Cancer J Clin. 2006 Jan-Feb;56(1):26-36; quiz 48-9 [PMID: 16449184]
  7. Am J Public Health. 2014 Jul;104(7):e20-37 [PMID: 24832403]
  8. J Am Med Inform Assoc. 2008 Jan-Feb;15(1):8-13 [PMID: 17947617]
  9. J Natl Cancer Inst Monogr. 2010;2010(40):104-10 [PMID: 20386059]
  10. J Natl Med Assoc. 2003 Sep;95(9):806-12 [PMID: 14527047]
  11. Am J Gastroenterol. 2009 Oct;104(10):2543-54 [PMID: 19550418]
  12. J Am Med Inform Assoc. 2008 Nov-Dec;15(6):729-36 [PMID: 18756002]
  13. Genet Med. 2011 Nov;13(11):956-65 [PMID: 22075527]
  14. Am J Med Qual. 2003 Sep-Oct;18(5):197-203 [PMID: 14604272]
  15. Cell Mol Biol (Noisy-le-grand). 2003 Dec;49(8):1213-8 [PMID: 14983989]
  16. J Am Med Inform Assoc. 2009 Jul-Aug;16(4):550-60 [PMID: 19390112]
  17. Arch Intern Med. 2009 Apr 27;169(8):781-7 [PMID: 19398690]
  18. Ann Intern Med. 2009 Aug 18;151(4):264-9, W64 [PMID: 19622511]
  19. Am J Prev Med. 2011 May;40(5 Suppl 2):S217-24 [PMID: 21521597]
  20. Stud Health Technol Inform. 2001;84(Pt 1):420-4 [PMID: 11604774]
  21. Ann Fam Med. 2012 Jul-Aug;10(4):312-9 [PMID: 22778119]
  22. N Engl J Med. 2010 Feb 4;362(5):382-5 [PMID: 20042745]
  23. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 [PMID: 22237781]
  24. J Clin Oncol. 2010 Jul 10;28(20):3307-15 [PMID: 20530272]
  25. Ann Fam Med. 2006 Mar-Apr;4(2):148-52 [PMID: 16569718]
  26. Psychooncology. 2006 Nov;15(11):1001-13 [PMID: 16511899]
  27. Front Oncol. 2012 Dec 27;2:190 [PMID: 23293767]
  28. Stud Health Technol Inform. 2007;129(Pt 1):43-7 [PMID: 17911675]
  29. Med Care. 2010 Oct;48(10):900-6 [PMID: 20808257]
  30. Risk Manag Healthc Policy. 2011;4:47-55 [PMID: 22312227]
  31. Obes Rev. 2009 Mar;10(2):194-203 [PMID: 19055539]
  32. Med Care. 2008 Sep;46(9 Suppl 1):S68-73 [PMID: 18725836]
  33. J Clin Oncol. 2006 May 10;24(14):2170-8 [PMID: 16682736]
  34. Obes Res. 1998 Apr;6 Suppl 1:23S-33S [PMID: 9569173]
  35. Obesity (Silver Spring). 2012 Aug;20(8):1726-31 [PMID: 22436842]
  36. Eur J Radiol. 2012 Jan;81(1):e70-6 [PMID: 21345631]
  37. J Natl Cancer Inst Monogr. 2010;2010(40):81-9 [PMID: 20386056]
  38. Prev Med. 1999 Apr;28(4):386-94 [PMID: 10090868]
  39. Arch Intern Med. 2011 Apr 11;171(7):636-41 [PMID: 21149743]
  40. Health Aff (Millwood). 2007 Mar-Apr;26(2):w169-77 [PMID: 17259200]
  41. J Natl Cancer Inst Monogr. 2012 May;2012(44):2-10 [PMID: 22623590]
  42. Pain. 2009 Dec 15;147(1-3):20-8 [PMID: 19695779]

Grants

  1. R25 CA117865/NCI NIH HHS
  2. T32 CA117865/NCI NIH HHS
  3. R25 CA04788/NCI NIH HHS

MeSH Term

Humans
Medical Informatics
Multivariate Analysis
Neoplasms
Patient Care Management

Word Cloud

Created with Highcharts 10.0.0HITcancerstudiestargetingbeneficialeffectP���=���informationcarepercentagepointslikelytechnologyreviewimpactcontinuumusedlessfindidentifyanalysisacrosspreventiondecisionmakinghealthsystematicmeta-analysisINTRODUCTION:HealthpotentialplaysignificantrolemanagementpurposeexamineempiricalinvestigatedifferentlevelsMETHODS:Electronicsearchesperformedfouracademicdatabasesauthorsthree-stepsearchprocess122metspecificinclusioncriteriaNextcodingsheetextractincludedarticleuseLogisticregressiondeterminestudy-specificcharacteristicsassociatedpositivefindingsRESULTS:Overall724%publishedanalysesreportedMultivariatefounddiffersdiagnosistreatmentrespectively7700139039reportcomparedadditionpatients31providers030Lastlyassessingbehaviorchangeoutcome4100627034CONCLUSION:Basedcurrentevidenceinterventionsseemsuccessfulphysiciansphaseand/oragendafutureresearchdiscussedcontinuum:

Similar Articles

Cited By